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Abstract—Breast cancer is a common and deadly disease 

that affects millions of women worldwide. Early detection 

is crucial for successful treatment, and machine learning 

techniques can help improve the accuracy of breast cancer 

diagnosis. In this work, the breast cancer dataset obtained 

from Kaggleis analysed using multiple decomposition 

techniques and classification algorithms, with a particular 

focus on model optimization. 

PCA, Sparse PCA, Fast ICA, and NMF were applied for 

dimensionality reduction, and Naive Bayes, Logistic 

Regression, Kernel SVM,SVM,KNN and Random Forest 

for classification. A combination of hyper parameter tuning 

and the model performance is optimized using cross-

validation. 

I INTRODUCTION 

Various models of Machine learning have become 

increasingly popular in various fields for their ability to 

predict outcomes and classify data accurately. However, the 

performance of these models is heavily dependent on the 

selection of the right algorithm and parameters. This project, 

aims to optimize the performance of machine learning 

models using various decomposition techniques and 

classification algorithms. We explore the effectiveness of 

PCA, Sparse PCA, Fast ICA, and NMF are explored for 

dimensionality reduction, and the performance of logistic 

regression, KNN, SVM, kernel SVM, Naive Bayes, and 

random forest classification algorithms are evaluated using 

different performance metrics like F1-score, confusion 

matrix, and specificity. The focus is on identifying the most 

effective combination of decomposition technique and 

classification algorithm for model optimization, with the 

goal of improving the performance of machine learning 

models in various applications. To showcase the 

effectiveness of this approach, a breast cancer dataset is 

used as a sample dataset, but the approach can be applied to 

any other dataset in different fields of research. 

 

II LITERATURE SURVEY 

[1] Evaluated the effectiveness in breast cancer prediction of 

various machine learning algorithms and found that SVM 

and Random Forest achieved the best 

performance.[2]Proposed an ensemble of machine learning 

models for breast cancer detection, combining regression 

and classification models. The proposed method achieved 

high accuracy and outperformed other methods.An 

overview of machine learning techniques for breast cancer 

prediction and diagnostics was provided in [3], highlighting 

the strengths and limitations of various 

methods.[11]Proposed a data preprocessing method for 

exam analysis systems, including data cleaning, data 

transformation, and data integration.Overall, these papers 

highlight the importance of machine learning and data 

preprocessing techniques for accurate and reliable 

classification and prediction in various domains. They also 

demonstrate the potential of novel methods such as deep 

learning for improving the interpretability and accuracy of 

machine learning models. 

 

III PROPOSED SYSTEM 

 

 

Fig1: Proposed system 

Dataset: 

The considered dataset “breast cancer” databases were 

obtained from the University of Wisconsin. Our bodies are 

made up of cells. The human body has around 100 trillion 

cells. And those cells normally respond in a predictable 

manner. They follow specific guidelines, split when taught 

to divide, and remain silent. When commanded to remain 

dormant, they remain in a certain place inside their tissue 

and do not migrate. The collection includes qualities and 

traits such as: sample code number, lump thickness, id 

number, uniformity of cell shape, uniformity of cell size, 

marginal adhesion, normal nucleoli, mitoses, bare nuclei, 

single epithelial cell size, bland chromatin, and 

mitochondria. Classification: 2 for benign, 4 for malignant. 

Dataset is normalized using Z-score normalization. 

 

Decomposition techniques: 

The models performance is enhanced even more using 
different decomposition techniques. 

PCA :principal component analysis, is a strategy for 
lowering a dataset's dimensionality. while retaining as much 
of the variation in the data as possible. Here are some of the 
important formulas used in PCA: 
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1.Covariance matrix calculation: The covariance matrix is 
computed by multiplying the covariance of each pair of 
variables in the dataset by the number of variables in the 
dataset. The covariance matrix C is given by the following if 
X is an n x m matrix with n observations and m variables. 

C = (1/n) * (X - X_mean) ^T * (X - X_mean) 

X_mean is a vector that includes the mean of every variable 
of length m. 

The eigenvalues and eigenvectors of the covariance matrix 
are computed as follows: The following formula is used to 
compute the eigenvectors and eigenvalues of the covariance 
matrix : 

C * v = λ * v 

where v is an eigenvector of C and λ is the corresponding 
eigenvalue. 

3. Principal components’ calculation: The primary 
components are the linear combinations of the original 
variables that capture the greatest amount of variance in the 
data. The Principal component is the product of the original 
data matrix X and the matrix of eigenvectors V: 

PC = X * V 

Where PC is a matrix of n x k dimension of principal 
components, and V is a matrix of m x k dimension of 
eigenvectors representingthe k largest eigenvalues. 

4.Calculation of the proportion of variance explained: The 
ratio of the associated eigenvalue to the total eigenvalues 
indicates the percentage of variation explained by each 
primary component: 

p_i = λ_i / (∑λ) 

Where, p_i is the percentage of variance explained by the i-
th principal component and _i denotes the associated 
eigenvalue.. 

5.Calculation of the total variance explained: The sum of the 
respective eigenvalues is the amount of variation that the 
first k main components can explain in total: 

var(k) = ∑_{i=1}^k λ_i 

Where, var(k) is the total variance explained by the first k 
principal components. 

 

FAST ICA: FastICA (Fast Independent Component 
Analysis) is an algorithm used to separate a multivariate 
signal into independent, non-Gaussian components. The 
algorithm is based on the minimization of mutual 
information between the components. Here are the key 
formulas used in FastICA: 

Whitening: The input data is first preprocessed by whitening 
it to remove any correlation between the components. The 
whitening operation can be expressed using the following 
formula: 

X_white = E * X 

The input data is represented by X, E the whitening matrix, 
and X_white- whitened data. 

Nonlinearity: FastICA uses a nonlinearity function, g(x), to 
estimate the independent components. The nonlinearity 
function should be a non-quadratic and non-linear function, 
such as the hyperbolic tangent function or the exponential 
function. 

Contrast function: The contrast function is used to measure 
the non-Gaussianity of the components. TTheFastICA 
algorithm seeks to maximisethe components' non-
Gaussianity. The contrast function is  expressed as follows: 

J(w) = E[g(w^T x)^2] - k 

Where, w - weight vector, x - input data, g(.) the nonlinearity 
function, and k is a constant term. 

Gradient descent: The FastICA algorithm uses gradient 
descent to find the weight vector that maximizes the contrast 
function. The following is an expression for the weight 
vector updating rule: 

w_new = E[x g(w^T x)] - E[g'(w^T x)] * w_old 

Wherew_oldindicates the older estimate of the weight 
vector, w_new, the updated one, g'(.) the nonlinearity 
function derivative, and E[] the expected value. 

Orthogonality constraint: To ensure that the estimated 
components are independent of each other, the weight 
vectors are updated in an iterative process while enforcing 
an orthogonality constraint. This can be achieved by 
orthogonalizing the weight vectors after each update step. 

These formulas are the key components of the FastICA 
algorithm and are used to estimate independent components 
in multivariate data. 

Sparse PCA:Sparse PCA (Principal Component Analysis) is 

a variant of PCA that produces sparse principal components, 

which have only a few non-zero values. This method is 

useful for feature selection in high-dimensional data. Here 

are some of the key formulas used in Sparse PCA: 

 

Objective function: The objective of Sparse PCA is to find 
sparse principal components that describes the data’s 
maximum amount of variance in the data. This can be 
expressed using the following formula: 

J(X, V) = ||X - XV||^2 + λ||V||_1 

X represents input data, V denotes the sparse principal 
component matrix, ||.|| denotes Frobenius norm, and λ is a 
parameter that controls the sparsity. 

 

Singular Value Decomposition (SVD):Sparse PCA uses 
SVD to decompose the input data into its principal 
components. The SVD of the input data X is represented  as: 

X = UΣV^T 

Where Σ is a diagonal matrix holding the singular values and 

U and V are orthogonal matrices. 

 

Thresholding:To obtain a sparse principal component 
matrix, the elements in the matrix V are thresholded using a 
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soft-thresholdingoperator. The soft-thresholding operator is 
represented as follows : 

S(x, λ) = sign(x) max(|x| - λ, 0) 

X, the input value, λ is the threshold parameter, and S(.) is 
the soft-thresholding operator. 

 

Eigenvalue calculation:To decide how many sparse main 

components to keep, the eigenvalues of the input data are 

computed. The eigenvalues show how much variation is 

accounted for by each major component.. 

 

Explained variance:The eigenvalues are used to compute the 

variance explained by each sparse main component. The i-th 

sparse principal component's explanation of variance is 

given by the following formula: 

 

Variance explained by PC_i = (λ_i / Σλ) * 100% 

 

whereλ_i- the i-th eigenvalue, and Σλ is the sum of all 

eigenvalues. 

 

These formulas are used to compute the sparse principal 

components in Sparse PCA. The resulting sparse principal 

components can be used for feature selection in high-

dimensional data. 

 

Factory Analysis:Finding underlying factors or dimensions 

that explain the pattern of correlations within a set of 

reported variables is done statistically using factor analysis. 

Here are some key formulas used in factor analysis: 

 

Correlation matrix:The correlations between all pairs of 
observed variables are shown by the correlation matrix. It is 
typically denoted as R and has dimensions p x p. The 
number of observed variables is represented by p. The 
formula for the correlation between variables i and j is: 

r_ij = cov(x_i, x_j) / (s_i * s_j) 

where, cov(x_i, x_j) - covariance between variables i and j, 
and s_i and s_j- the standard deviations of variables i and j, 
respectively. 

 

Eigenvalues:The amount of variation in the data explained 
by each component is expressed in terms of eigenvalues. 
They are obtained by solving the characteristic equation of 
the correlation matrix: 

|R - λI| = 0 

where λ is the eigenvalue and I is the identity matrix. 

 

Eigen vectors:Eigen vectors are the corresponding factor 
loadings for each eigenvalue. They indicate the degree to 
which each observed variable is associated with each factor. 
Eigenvectors can be obtained by solving the equation: 

(R - λI) v = 0 

where v is the eigenvector and λ is the eigenvalue. 

 

Factor scores: Factor scores are the values of each 
observation on each factor. They are evaluated as the sum of 
the product of each observed variable and its relevant factor 
loading: 

F_i = b_1i * x_1i + b_2i * x_2i + ... + b_pi* x_pi 

whereF_i is the factor score for observation i, b_ji is the 
factor loading for variable j in factor i, and x_ji is the value 
of variable j for observation i. 

 

Factor rotation:Factor rotation is a technique used to 

simplify and interpret the factor structure. There are various 

methods of rotation, but one common approach is 

orthogonal rotation, which maintains the independence of 

the factors. The most widely used orthogonal rotation 

method is the Varimax rotation, which aims to maximize the 

variance of the squared factor loadings within each factor. 

 

These are some of the key formulas used in factor analysis. 

There are other more advanced techniques such as 

confirmatory factor analysis, which involves specifying a 

priori the structure of the factors and their relationships, and 

structural equation modeling, whichallows for testing of 

complex models with multiple latent variables. 

 

Non-negative matrix factorization: Non-negative matrix 

factorization (NMF) is a dimensionality reduction technique 

that factorizes on-negative data matrix into two non-

negative matrices, typically with lower rank, such that the 

product approximates the original matrix. Here are some 

key formulas used in NMF: 

 

Data matrix:The data matrix X has dimensions n x m, n 

represents the number of observations and m, the number of 

variables. Each element x_ij in X represents the value of 

variable j for observation i. 

 

Factor matrices:The goal of NMF is to factorize X into two 

non-negative matrices A and B, with dimensions n x k and k 

x m, respectively, where k is the number of factors. The 

elements a_ik and b_kj in A and B represent the 

contribution of factor k to the value of variable j for 

observation i, respectively. 

 

Objective function:The objective of NMF is to find the 
factor matrices A and B that minimize the reconstruction 
error between X and the product WH. One commonly used 
objective function is the Frobenius norm: 

min ||X - AB||^2_F 

where ||.||^2_F is the squared Frobenius norm, defined as the 
sum of the squared elements of a matrix. 
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Updating rules: NMF is typically solved iteratively using 
updating rules that minimize the objective function. One 
popular algorithm for NMF is the multiplicative updating 
rule, which updates A and B alternatively using the 
following equations: 

b_kj<- b_kj * (a_ik * x_ij / (a_ik * (AB)_ij + epsilon)) 

a_ik<- a_ik * (x_ij * b_kj / ((AB)_ij * b_kj + epsilon)) 

To prevent division by zero, there is a tiny positive constant 
called epsilon. 

Sparsity constraint: NMF can be extended to impose sparsity 
on the factor matrices, which can help identify interpretable 
features in the data. To achieve sparsity is to add a penalty 
term to the objective function, such as the L1 norm: 

min ||X - AB||^2_F + lambda ||A||_1 + mu ||B||_1 

where lambda and mu are regularization parameters that 
control the sparsity of A and B, respectively, and ||.||_1 is the 
L1 norm, defined as the sum of the absolute values of the 
elements of a matrix. 

 

These are some of the key formulas used in NMF. There are 

other variations and extensions of NMF, such as sparse 

NMF, non-negative tensor factorization, and non-negative 

sparse PCA, which employ different regularization 

constraints and optimization algorithms. 

 

In this system, we have used different classification 

techniques to analyses the dataset that is assigned. The 

system will return the algorithm with best accuracy among 

the algorithms used. 

 Classification techniques used, 

a) Logistic Regression 

b) Support Vector Machine 

c) K-Nearest Neighbor 

d) Kernel Support Vector Machine 

e) Naive Bayes 

f) Random Forest 

g) Decision Tree 

  Among all these techniques one is selected based on their 
performances. 

Training the system: 

1.Logistic Regression 

Logistic regression is a statistical technique used to 
predict a binary outcome variable (such as true or false, yes, 
or no) based on one or more predictor variables. It models 
the probability of the outcome variable using the logistic 
function, which maps any real-valued input to a probability 
score between 0 and 1. The logistic regression model 
estimates the values of the regression coefficients that 
maximize the likelihood of the observed data using the 
maximum likelihood estimation method. It is commonly 
used in various fields, including medicine, economics, and 

machine learning for binary classification tasks. The goal is 
to predict the probability of occurring an event. 

The Logistic regression formula is given by. 

p(y=1 | x) = 1 / (1 + exp(-z)) 

Where, 

 (y=1 | x) is the probability of the event occurring 
given the predictor variables 

 x denotes the predictor variables 

 z = b0 + b1x1 + b2x2 + ... + bpxp is the linear 
combination of the predictor variables and their respective 
coefficients, where b0 is the intercept and b1, b2, ..., bp are 
the coefficients for the predictor variables. 

 

2.Support Vector Machine 

  Support Vector Machine or SVM is one of 
the most popular Supervised Learning algorithms, which is 
used for Classification as well as Regression problems. 
However, primarily, it is used for Classification problems in 
Machine Learning. The goal of the SVM algorithm is to 
create the best line or decision boundary that can segregate 
n-dimensional space into classes so that we can easily put 
the new data point in the correct category in the future. This 
best decision boundary is called a hyperplane. SVM chooses 
the extreme points/vectors that help in creating the 
hyperplane. These extreme cases are called as support 
vectors, and hence algorithm is termed as Support Vector 
Machine. 

The Support Vector Machine is given by 

w*x + b = 0 

where w is the weight vector, x is the input vector, and b is 
the bias. 

3. K-Nearest Neighbor 

 KNN, or K-Nearest Neighbors, is a type of 

machine learning algorithm that is used for classification 

and regression tasks. It is a non-parametric method that 

works by comparing an input example to the k nearest 

training examples in a feature space, and then assigning a 

label or value to the input example based on the majority 

label or average value of its k nearest neighbors. 

Formula used to calculate distance between points: 

 

4. Kernel Support Vector Machine 

Kernel SVM (Support Vector Machine) is a type of 
machine learning algorithm used for classification and 
regression tasks. It is a supervised learning method that 
works by finding a hyperplane that separates different 
classes in a high-dimensional space. 

f(x) = sum(alpha_i * y_i * K(x, x_i)) + b 
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where f(x) is the decision function, alpha_i is the Lagrange 
multiplier, Y_i is the label of the ith training example, x_i is 
the ith training example, K(x, x_i) is the kernel function, and 
b is the bias. 

 

5.Naive Bayes  

  Naive Bayes is a probabilistic machine learning 

algorithm used for classification tasks. It is based on Bayes' 

theorem, which states that the probability of a hypothesis 

(in this case, a class label) given some observed evidence 

(in this case, input features) is proportional to the 

probability of the evidence given the hypothesis times the 

prior probability of the hypothesis. 

P(c|x) = P(x|c) * P(c) / P(x) 

where P(c|x) is the probability of class c given the input 

features x, P(x|c) is the probability of observing the input 

features x given the class c, P(c) is the prior probability of 

class c, and P(x) is the probability of observing the input 

features x. 

6.Random Forest 

Random Forest is a machine learning algorithm that is 
used for classification and regression. It is a collection of 
multiple decision trees, where each tree is trained on a 
random subset of the data and outputs a prediction. The final 
prediction of a Random Forest is determined by taking the 
average (for regression) or majority vote (for classification) 
of the predictions from individual trees. This combination of 
multiple trees makes the algorithm more robust to overfitting 
compared to a single decision tree. 

f(x) = mode{p1(x), p2(x), ..., pm(x)} 

 

7.Decision Tree 

 Decision tree is a popular machine learning 
algorithm that is widely used for both classification and 
regression tasks. It is a tree-structured model that makes of 
loadings (regression coefficients), and E is the residual 
matrix. 

Y = UQ' + F, where Y is the matrix of dependent 
variables, U is the matrix of scores (weights), Q is the matrix 
of loadings (regression coefficients), and F is the residual 
matrix. 

The scores and loadings are estimated by iteratively 
minimizing the residuals in both X and Y. The final 
regression equation can then be expressed as Y = XB + E, 
where B is the matrix of regression coefficients. 

Evaluation Metrics: 

At this stage the metric for the different algorithms is 
evaluated. Based on those metrics the best algorithm is 
evaluated for the data set. For the calculation of the metric 
the used methods are 

1.Accuracy 

2.Specificity 

3.F1 score 

a. K -fold cross validation 

Accuracy: Accuracy is a common evaluation metric used in 
classification tasks to measure the proportion of correctly 
classified instances out of the total number of instances in a 
dataset. It is calculated as follows: 

Accuracy = (Number of Correct Predictions) / (Total 
Number of Predictions) 

where the number of correct predictions is the number of 
instances that are correctly classified by the model, and the 
total number of predictions is the total number of instances 
in the dataset. 

Specificity: Specificity is a commonly used evaluation 
metric in binary classification tasks to measure the 
proportion of true negative predictions out of the total 
number of negative instances in a dataset. It is calculated as 
follows: 

Specificity = True Negatives / (True Negatives + False 
Positives) 

where True Negatives (TN) are the number of instances that 
are truly negative and are correctly classified as negative by 
the model, and False Positives (FP) are the number of 
instances that are truly negative but are incorrectly classified 
as positive by the model. 

F1-score: F1-score is a common evaluation metric used in 
classification tasks that combines precision and recall into a 
single value. It is calculated as the harmonic mean of 
precision and recall, as follows: 

F1-score = 2 * (Precision * Recall) / (Precision + Recall) 

Where Precision is the proportion of true positive 
predictions out of the total number of positive predictions, 
and Recall (also known as sensitivity) is the proportion of 
true positive predictions out of the total number of positive 
instances in the dataset. 

Precision = True Positives / (True Positives + False 
Positives) 

Recall = True Positives / (True Positives + False Negatives) 

 

Where True Positives (TP) are the number of 
instances that are truly positive and are correctly classified 
as positive by the model, False Positives (FP) are the number 
of instances that are truly negative but are incorrectly 
classified as positive by the model, and False Negatives (FN) 
are the number of instances that are truly positive but are 
incorrectly classified as negative by the model. 

K-fold Cross Validation: K-fold cross-validation is a 
commonly used method for evaluating the performance of a 
machine learning model by partitioning the dataset into k 
equally sized folds, using k-1 folds for training the model, 
and evaluating it on the remaining fold. This process is 
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repeated k times, with each fold serving as the validation set 
once. 

The average performance of the model across the k-
folds is then computed as the evaluation metric, such as 
accuracy, precision, recall, or F1-score. The formula for k-
fold cross-validation is as follows: 

Partition the dataset into k equally sized folds. 

For each fold i in k: 

a. Train the model on the k-1 folds except for fold i. 

b. Evaluate the model on fold i and record the evaluation 
metric. 

Compute the average evaluation metric across the k-folds. 

The formula for computing the average evaluation metric is 
as follows: 

Average Evaluation Metric = (Evaluation Metric Fold 1 + 
Evaluation Metric Fold 2 + ... + Evaluation Metric Fold k) / 
k 

 

IV EXPERIMENTAL RESULTS 

 

 

Fig 2: Performance Evaluation using PCA 

The results of each classification technique under different 

metric evaluation are as shown above. The above graph 

depicts the results that are achieved by using Principle 

Component Analysis. 

Table 1: Performance Evaluation using PCA 

 

 

From the above results, the algorithms that produced the 

best results were Logistic regression, KNN, Support Vector 

Classifier and Support Vector Classifier RBF with 98.86% 

under Specificity. 

 
Fig 3: Performance Evaluation using Kernal PCA 

 

The above graph depicts the results that are achieved by 

using Kernal PCA. 

 

Table 2: Performance Evaluation using  Kernal PCA 

 

From the above results, the algorithms that produced the 

best results were Random forest with 100%, KNN, Naïve 

Baye’s and Decision tree with 98.82% under Specificity. 

 

 
Fig 4: Performance Evaluation using Fast ICA 

 

The results of each classification technique under different 

metric evaluation are as shown above. The above graph 

depicts the results that are achieved by using Fast ICA. 

Table 3: Performance Evaluation using  Fast ICA 
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From the above results, the algorithms that produced the 

best results were Logistic regression with100%,KNN and 

SVC with 98.88% under Specificity. 

 
Fig 5: Performance Evaluation using Factor Analysis 

 

The results of each classification technique under different 

metric evaluation are as shown above. The above graphs 

depicts the results that are achieved by using Factor 

Analysis. 

Table 4: Performance Evaluation using Factor Analysis 

 

From the above results, the algorithms that produced the best 

results were Logistic Regression and KNN with 97.91% 

under Specificity. 

 
Fig 6: Performance Evaluation using Sparce PCA 

 

The results of each classification technique under different 

metric evaluation are as shown above. The above graphs 

depict the results that are achieved by using Sparse PCA. 

Table 5:Performance Evaluation using Sparce PCA 

 

From the above results, the algorithms that produced the best 

results were Support Vector Classifier and Random Forest 

with 98.54% under Accuracy Score. 

 
Fig 7: Performance Evaluation using NMF 

 

The results of each classification technique under 

different metric evaluation are as shown above. The above 

graph depicts the results that are achieved by using Non 

Negative Matrix Factorization. 

Table 6:Performance Evaluation using NMF 

 

From the above results, the algorithms that produced the best 

results were Support Vector Classifier with 97.81%, 

Logistic Regression and Support Vector Machine RBF with 

97.08% under accuracy score. 
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Fig 8: Performance Evaluation under no decomposition 

 

The results of each classification technique under different 

metric evaluation are as shown above. The above graphs 

depicts the results are achieved without any decomposition 

techniques. 

Table 7:Performance Evaluation under no decomposition 

 

From the above results, the algorithms that produced the best 

results were Logistic regression , Random forest, Support 

Vector Classifier and Support Vector Classifier RBF with 

97.8% under Specificity 

 

VI.CONCLUSION 

This research paper reflects the metric evaluation of 
different regression techniques on the same dataset. 
Among all those different regression techniques Random 
Forest came as the best technique. By this metric 
evaluation the conclusion is that the Random Forest is 
best suitable for the prediction of the price. The same 
experimentation can be done with other datasets. 
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