

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

171

 An Empirical model of Data Analysis and

Techniques for Breast Cancer Detection
1 G. Chamundeswari, 2 K.P.S.B.Sasikanth,3 K.V.S. Rama Krishna, 4K. Subhashini, 5A. SaiTeja

1Ramachandra College of Engineering, Eluru, Andhra Pradesh, India

2,3,4,5SIR C R Reddy College of Engineering, Eluru, Andhra Pradesh, India

Abstract—Breast cancer is a common and deadly disease

that affects millions of women worldwide. Early detection

is crucial for successful treatment, and machine learning

techniques can help improve the accuracy of breast cancer

diagnosis. In this work, the breast cancer dataset obtained

from Kaggleis analysed using multiple decomposition

techniques and classification algorithms, with a particular

focus on model optimization.

PCA, Sparse PCA, Fast ICA, and NMF were applied for

dimensionality reduction, and Naive Bayes, Logistic

Regression, Kernel SVM,SVM,KNN and Random Forest

for classification. A combination of hyper parameter tuning

and the model performance is optimized using cross-

validation.

I INTRODUCTION

Various models of Machine learning have become

increasingly popular in various fields for their ability to

predict outcomes and classify data accurately. However, the

performance of these models is heavily dependent on the

selection of the right algorithm and parameters. This project,

aims to optimize the performance of machine learning

models using various decomposition techniques and

classification algorithms. We explore the effectiveness of

PCA, Sparse PCA, Fast ICA, and NMF are explored for

dimensionality reduction, and the performance of logistic

regression, KNN, SVM, kernel SVM, Naive Bayes, and

random forest classification algorithms are evaluated using

different performance metrics like F1-score, confusion

matrix, and specificity. The focus is on identifying the most

effective combination of decomposition technique and

classification algorithm for model optimization, with the

goal of improving the performance of machine learning

models in various applications. To showcase the

effectiveness of this approach, a breast cancer dataset is

used as a sample dataset, but the approach can be applied to

any other dataset in different fields of research.

II LITERATURE SURVEY

[1] Evaluated the effectiveness in breast cancer prediction of

various machine learning algorithms and found that SVM

and Random Forest achieved the best

performance.[2]Proposed an ensemble of machine learning

models for breast cancer detection, combining regression

and classification models. The proposed method achieved

high accuracy and outperformed other methods.An

overview of machine learning techniques for breast cancer

prediction and diagnostics was provided in [3], highlighting

the strengths and limitations of various

methods.[11]Proposed a data preprocessing method for

exam analysis systems, including data cleaning, data

transformation, and data integration.Overall, these papers

highlight the importance of machine learning and data

preprocessing techniques for accurate and reliable

classification and prediction in various domains. They also

demonstrate the potential of novel methods such as deep

learning for improving the interpretability and accuracy of

machine learning models.

III PROPOSED SYSTEM

Fig1: Proposed system

Dataset:

The considered dataset “breast cancer” databases were

obtained from the University of Wisconsin. Our bodies are

made up of cells. The human body has around 100 trillion

cells. And those cells normally respond in a predictable

manner. They follow specific guidelines, split when taught

to divide, and remain silent. When commanded to remain

dormant, they remain in a certain place inside their tissue

and do not migrate. The collection includes qualities and

traits such as: sample code number, lump thickness, id

number, uniformity of cell shape, uniformity of cell size,

marginal adhesion, normal nucleoli, mitoses, bare nuclei,

single epithelial cell size, bland chromatin, and

mitochondria. Classification: 2 for benign, 4 for malignant.

Dataset is normalized using Z-score normalization.

Decomposition techniques:

The models performance is enhanced even more using
different decomposition techniques.

PCA :principal component analysis, is a strategy for
lowering a dataset's dimensionality. while retaining as much
of the variation in the data as possible. Here are some of the
important formulas used in PCA:

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

172

1.Covariance matrix calculation: The covariance matrix is
computed by multiplying the covariance of each pair of
variables in the dataset by the number of variables in the
dataset. The covariance matrix C is given by the following if
X is an n x m matrix with n observations and m variables.

C = (1/n) * (X - X_mean) ^T * (X - X_mean)

X_mean is a vector that includes the mean of every variable
of length m.

The eigenvalues and eigenvectors of the covariance matrix
are computed as follows: The following formula is used to
compute the eigenvectors and eigenvalues of the covariance
matrix :

C * v = λ * v

where v is an eigenvector of C and λ is the corresponding
eigenvalue.

3. Principal components’ calculation: The primary
components are the linear combinations of the original
variables that capture the greatest amount of variance in the
data. The Principal component is the product of the original
data matrix X and the matrix of eigenvectors V:

PC = X * V

Where PC is a matrix of n x k dimension of principal
components, and V is a matrix of m x k dimension of
eigenvectors representingthe k largest eigenvalues.

4.Calculation of the proportion of variance explained: The
ratio of the associated eigenvalue to the total eigenvalues
indicates the percentage of variation explained by each
primary component:

p_i = λ_i / (∑λ)

Where, p_i is the percentage of variance explained by the i-
th principal component and _i denotes the associated
eigenvalue..

5.Calculation of the total variance explained: The sum of the
respective eigenvalues is the amount of variation that the
first k main components can explain in total:

var(k) = ∑_{i=1}^k λ_i

Where, var(k) is the total variance explained by the first k
principal components.

FAST ICA: FastICA (Fast Independent Component
Analysis) is an algorithm used to separate a multivariate
signal into independent, non-Gaussian components. The
algorithm is based on the minimization of mutual
information between the components. Here are the key
formulas used in FastICA:

Whitening: The input data is first preprocessed by whitening
it to remove any correlation between the components. The
whitening operation can be expressed using the following
formula:

X_white = E * X

The input data is represented by X, E the whitening matrix,
and X_white- whitened data.

Nonlinearity: FastICA uses a nonlinearity function, g(x), to
estimate the independent components. The nonlinearity
function should be a non-quadratic and non-linear function,
such as the hyperbolic tangent function or the exponential
function.

Contrast function: The contrast function is used to measure
the non-Gaussianity of the components. TTheFastICA
algorithm seeks to maximisethe components' non-
Gaussianity. The contrast function is expressed as follows:

J(w) = E[g(w^T x)^2] - k

Where, w - weight vector, x - input data, g(.) the nonlinearity
function, and k is a constant term.

Gradient descent: The FastICA algorithm uses gradient
descent to find the weight vector that maximizes the contrast
function. The following is an expression for the weight
vector updating rule:

w_new = E[x g(w^T x)] - E[g'(w^T x)] * w_old

Wherew_oldindicates the older estimate of the weight
vector, w_new, the updated one, g'(.) the nonlinearity
function derivative, and E[] the expected value.

Orthogonality constraint: To ensure that the estimated
components are independent of each other, the weight
vectors are updated in an iterative process while enforcing
an orthogonality constraint. This can be achieved by
orthogonalizing the weight vectors after each update step.

These formulas are the key components of the FastICA
algorithm and are used to estimate independent components
in multivariate data.

Sparse PCA:Sparse PCA (Principal Component Analysis) is

a variant of PCA that produces sparse principal components,

which have only a few non-zero values. This method is

useful for feature selection in high-dimensional data. Here

are some of the key formulas used in Sparse PCA:

Objective function: The objective of Sparse PCA is to find
sparse principal components that describes the data’s
maximum amount of variance in the data. This can be
expressed using the following formula:

J(X, V) = ||X - XV||^2 + λ||V||_1

X represents input data, V denotes the sparse principal
component matrix, ||.|| denotes Frobenius norm, and λ is a
parameter that controls the sparsity.

Singular Value Decomposition (SVD):Sparse PCA uses
SVD to decompose the input data into its principal
components. The SVD of the input data X is represented as:

X = UΣV^T

Where Σ is a diagonal matrix holding the singular values and

U and V are orthogonal matrices.

Thresholding:To obtain a sparse principal component
matrix, the elements in the matrix V are thresholded using a

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

173

soft-thresholdingoperator. The soft-thresholding operator is
represented as follows :

S(x, λ) = sign(x) max(|x| - λ, 0)

X, the input value, λ is the threshold parameter, and S(.) is
the soft-thresholding operator.

Eigenvalue calculation:To decide how many sparse main

components to keep, the eigenvalues of the input data are

computed. The eigenvalues show how much variation is

accounted for by each major component..

Explained variance:The eigenvalues are used to compute the

variance explained by each sparse main component. The i-th

sparse principal component's explanation of variance is

given by the following formula:

Variance explained by PC_i = (λ_i / Σλ) * 100%

whereλ_i- the i-th eigenvalue, and Σλ is the sum of all

eigenvalues.

These formulas are used to compute the sparse principal

components in Sparse PCA. The resulting sparse principal

components can be used for feature selection in high-

dimensional data.

Factory Analysis:Finding underlying factors or dimensions

that explain the pattern of correlations within a set of

reported variables is done statistically using factor analysis.

Here are some key formulas used in factor analysis:

Correlation matrix:The correlations between all pairs of
observed variables are shown by the correlation matrix. It is
typically denoted as R and has dimensions p x p. The
number of observed variables is represented by p. The
formula for the correlation between variables i and j is:

r_ij = cov(x_i, x_j) / (s_i * s_j)

where, cov(x_i, x_j) - covariance between variables i and j,
and s_i and s_j- the standard deviations of variables i and j,
respectively.

Eigenvalues:The amount of variation in the data explained
by each component is expressed in terms of eigenvalues.
They are obtained by solving the characteristic equation of
the correlation matrix:

|R - λI| = 0

where λ is the eigenvalue and I is the identity matrix.

Eigen vectors:Eigen vectors are the corresponding factor
loadings for each eigenvalue. They indicate the degree to
which each observed variable is associated with each factor.
Eigenvectors can be obtained by solving the equation:

(R - λI) v = 0

where v is the eigenvector and λ is the eigenvalue.

Factor scores: Factor scores are the values of each
observation on each factor. They are evaluated as the sum of
the product of each observed variable and its relevant factor
loading:

F_i = b_1i * x_1i + b_2i * x_2i + ... + b_pi* x_pi

whereF_i is the factor score for observation i, b_ji is the
factor loading for variable j in factor i, and x_ji is the value
of variable j for observation i.

Factor rotation:Factor rotation is a technique used to

simplify and interpret the factor structure. There are various

methods of rotation, but one common approach is

orthogonal rotation, which maintains the independence of

the factors. The most widely used orthogonal rotation

method is the Varimax rotation, which aims to maximize the

variance of the squared factor loadings within each factor.

These are some of the key formulas used in factor analysis.

There are other more advanced techniques such as

confirmatory factor analysis, which involves specifying a

priori the structure of the factors and their relationships, and

structural equation modeling, whichallows for testing of

complex models with multiple latent variables.

Non-negative matrix factorization: Non-negative matrix

factorization (NMF) is a dimensionality reduction technique

that factorizes on-negative data matrix into two non-

negative matrices, typically with lower rank, such that the

product approximates the original matrix. Here are some

key formulas used in NMF:

Data matrix:The data matrix X has dimensions n x m, n

represents the number of observations and m, the number of

variables. Each element x_ij in X represents the value of

variable j for observation i.

Factor matrices:The goal of NMF is to factorize X into two

non-negative matrices A and B, with dimensions n x k and k

x m, respectively, where k is the number of factors. The

elements a_ik and b_kj in A and B represent the

contribution of factor k to the value of variable j for

observation i, respectively.

Objective function:The objective of NMF is to find the
factor matrices A and B that minimize the reconstruction
error between X and the product WH. One commonly used
objective function is the Frobenius norm:

min ||X - AB||^2_F

where ||.||^2_F is the squared Frobenius norm, defined as the
sum of the squared elements of a matrix.

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

174

Updating rules: NMF is typically solved iteratively using
updating rules that minimize the objective function. One
popular algorithm for NMF is the multiplicative updating
rule, which updates A and B alternatively using the
following equations:

b_kj<- b_kj * (a_ik * x_ij / (a_ik * (AB)_ij + epsilon))

a_ik<- a_ik * (x_ij * b_kj / ((AB)_ij * b_kj + epsilon))

To prevent division by zero, there is a tiny positive constant
called epsilon.

Sparsity constraint: NMF can be extended to impose sparsity
on the factor matrices, which can help identify interpretable
features in the data. To achieve sparsity is to add a penalty
term to the objective function, such as the L1 norm:

min ||X - AB||^2_F + lambda ||A||_1 + mu ||B||_1

where lambda and mu are regularization parameters that
control the sparsity of A and B, respectively, and ||.||_1 is the
L1 norm, defined as the sum of the absolute values of the
elements of a matrix.

These are some of the key formulas used in NMF. There are

other variations and extensions of NMF, such as sparse

NMF, non-negative tensor factorization, and non-negative

sparse PCA, which employ different regularization

constraints and optimization algorithms.

In this system, we have used different classification

techniques to analyses the dataset that is assigned. The

system will return the algorithm with best accuracy among

the algorithms used.

 Classification techniques used,

a) Logistic Regression

b) Support Vector Machine

c) K-Nearest Neighbor

d) Kernel Support Vector Machine

e) Naive Bayes

f) Random Forest

g) Decision Tree

 Among all these techniques one is selected based on their
performances.

Training the system:

1.Logistic Regression

Logistic regression is a statistical technique used to
predict a binary outcome variable (such as true or false, yes,
or no) based on one or more predictor variables. It models
the probability of the outcome variable using the logistic
function, which maps any real-valued input to a probability
score between 0 and 1. The logistic regression model
estimates the values of the regression coefficients that
maximize the likelihood of the observed data using the
maximum likelihood estimation method. It is commonly
used in various fields, including medicine, economics, and

machine learning for binary classification tasks. The goal is
to predict the probability of occurring an event.

The Logistic regression formula is given by.

p(y=1 | x) = 1 / (1 + exp(-z))

Where,

 (y=1 | x) is the probability of the event occurring
given the predictor variables

 x denotes the predictor variables

 z = b0 + b1x1 + b2x2 + ... + bpxp is the linear
combination of the predictor variables and their respective
coefficients, where b0 is the intercept and b1, b2, ..., bp are
the coefficients for the predictor variables.

2.Support Vector Machine

 Support Vector Machine or SVM is one of
the most popular Supervised Learning algorithms, which is
used for Classification as well as Regression problems.
However, primarily, it is used for Classification problems in
Machine Learning. The goal of the SVM algorithm is to
create the best line or decision boundary that can segregate
n-dimensional space into classes so that we can easily put
the new data point in the correct category in the future. This
best decision boundary is called a hyperplane. SVM chooses
the extreme points/vectors that help in creating the
hyperplane. These extreme cases are called as support
vectors, and hence algorithm is termed as Support Vector
Machine.

The Support Vector Machine is given by

w*x + b = 0

where w is the weight vector, x is the input vector, and b is
the bias.

3. K-Nearest Neighbor

 KNN, or K-Nearest Neighbors, is a type of

machine learning algorithm that is used for classification

and regression tasks. It is a non-parametric method that

works by comparing an input example to the k nearest

training examples in a feature space, and then assigning a

label or value to the input example based on the majority

label or average value of its k nearest neighbors.

Formula used to calculate distance between points:

4. Kernel Support Vector Machine

Kernel SVM (Support Vector Machine) is a type of
machine learning algorithm used for classification and
regression tasks. It is a supervised learning method that
works by finding a hyperplane that separates different
classes in a high-dimensional space.

f(x) = sum(alpha_i * y_i * K(x, x_i)) + b

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

175

where f(x) is the decision function, alpha_i is the Lagrange
multiplier, Y_i is the label of the ith training example, x_i is
the ith training example, K(x, x_i) is the kernel function, and
b is the bias.

5.Naive Bayes

 Naive Bayes is a probabilistic machine learning

algorithm used for classification tasks. It is based on Bayes'

theorem, which states that the probability of a hypothesis

(in this case, a class label) given some observed evidence

(in this case, input features) is proportional to the

probability of the evidence given the hypothesis times the

prior probability of the hypothesis.

P(c|x) = P(x|c) * P(c) / P(x)

where P(c|x) is the probability of class c given the input

features x, P(x|c) is the probability of observing the input

features x given the class c, P(c) is the prior probability of

class c, and P(x) is the probability of observing the input

features x.

6.Random Forest

Random Forest is a machine learning algorithm that is
used for classification and regression. It is a collection of
multiple decision trees, where each tree is trained on a
random subset of the data and outputs a prediction. The final
prediction of a Random Forest is determined by taking the
average (for regression) or majority vote (for classification)
of the predictions from individual trees. This combination of
multiple trees makes the algorithm more robust to overfitting
compared to a single decision tree.

f(x) = mode{p1(x), p2(x), ..., pm(x)}

7.Decision Tree

 Decision tree is a popular machine learning
algorithm that is widely used for both classification and
regression tasks. It is a tree-structured model that makes of
loadings (regression coefficients), and E is the residual
matrix.

Y = UQ' + F, where Y is the matrix of dependent
variables, U is the matrix of scores (weights), Q is the matrix
of loadings (regression coefficients), and F is the residual
matrix.

The scores and loadings are estimated by iteratively
minimizing the residuals in both X and Y. The final
regression equation can then be expressed as Y = XB + E,
where B is the matrix of regression coefficients.

Evaluation Metrics:

At this stage the metric for the different algorithms is
evaluated. Based on those metrics the best algorithm is
evaluated for the data set. For the calculation of the metric
the used methods are

1.Accuracy

2.Specificity

3.F1 score

a. K -fold cross validation

Accuracy: Accuracy is a common evaluation metric used in
classification tasks to measure the proportion of correctly
classified instances out of the total number of instances in a
dataset. It is calculated as follows:

Accuracy = (Number of Correct Predictions) / (Total
Number of Predictions)

where the number of correct predictions is the number of
instances that are correctly classified by the model, and the
total number of predictions is the total number of instances
in the dataset.

Specificity: Specificity is a commonly used evaluation
metric in binary classification tasks to measure the
proportion of true negative predictions out of the total
number of negative instances in a dataset. It is calculated as
follows:

Specificity = True Negatives / (True Negatives + False
Positives)

where True Negatives (TN) are the number of instances that
are truly negative and are correctly classified as negative by
the model, and False Positives (FP) are the number of
instances that are truly negative but are incorrectly classified
as positive by the model.

F1-score: F1-score is a common evaluation metric used in
classification tasks that combines precision and recall into a
single value. It is calculated as the harmonic mean of
precision and recall, as follows:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

Where Precision is the proportion of true positive
predictions out of the total number of positive predictions,
and Recall (also known as sensitivity) is the proportion of
true positive predictions out of the total number of positive
instances in the dataset.

Precision = True Positives / (True Positives + False
Positives)

Recall = True Positives / (True Positives + False Negatives)

Where True Positives (TP) are the number of
instances that are truly positive and are correctly classified
as positive by the model, False Positives (FP) are the number
of instances that are truly negative but are incorrectly
classified as positive by the model, and False Negatives (FN)
are the number of instances that are truly positive but are
incorrectly classified as negative by the model.

K-fold Cross Validation: K-fold cross-validation is a
commonly used method for evaluating the performance of a
machine learning model by partitioning the dataset into k
equally sized folds, using k-1 folds for training the model,
and evaluating it on the remaining fold. This process is

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

176

repeated k times, with each fold serving as the validation set
once.

The average performance of the model across the k-
folds is then computed as the evaluation metric, such as
accuracy, precision, recall, or F1-score. The formula for k-
fold cross-validation is as follows:

Partition the dataset into k equally sized folds.

For each fold i in k:

a. Train the model on the k-1 folds except for fold i.

b. Evaluate the model on fold i and record the evaluation
metric.

Compute the average evaluation metric across the k-folds.

The formula for computing the average evaluation metric is
as follows:

Average Evaluation Metric = (Evaluation Metric Fold 1 +
Evaluation Metric Fold 2 + ... + Evaluation Metric Fold k) /
k

IV EXPERIMENTAL RESULTS

Fig 2: Performance Evaluation using PCA

The results of each classification technique under different

metric evaluation are as shown above. The above graph

depicts the results that are achieved by using Principle

Component Analysis.

Table 1: Performance Evaluation using PCA

From the above results, the algorithms that produced the

best results were Logistic regression, KNN, Support Vector

Classifier and Support Vector Classifier RBF with 98.86%

under Specificity.

Fig 3: Performance Evaluation using Kernal PCA

The above graph depicts the results that are achieved by

using Kernal PCA.

Table 2: Performance Evaluation using Kernal PCA

From the above results, the algorithms that produced the

best results were Random forest with 100%, KNN, Naïve

Baye’s and Decision tree with 98.82% under Specificity.

Fig 4: Performance Evaluation using Fast ICA

The results of each classification technique under different

metric evaluation are as shown above. The above graph

depicts the results that are achieved by using Fast ICA.

Table 3: Performance Evaluation using Fast ICA

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

177

From the above results, the algorithms that produced the

best results were Logistic regression with100%,KNN and

SVC with 98.88% under Specificity.

Fig 5: Performance Evaluation using Factor Analysis

The results of each classification technique under different

metric evaluation are as shown above. The above graphs

depicts the results that are achieved by using Factor

Analysis.

Table 4: Performance Evaluation using Factor Analysis

From the above results, the algorithms that produced the best

results were Logistic Regression and KNN with 97.91%

under Specificity.

Fig 6: Performance Evaluation using Sparce PCA

The results of each classification technique under different

metric evaluation are as shown above. The above graphs

depict the results that are achieved by using Sparse PCA.

Table 5:Performance Evaluation using Sparce PCA

From the above results, the algorithms that produced the best

results were Support Vector Classifier and Random Forest

with 98.54% under Accuracy Score.

Fig 7: Performance Evaluation using NMF

The results of each classification technique under

different metric evaluation are as shown above. The above

graph depicts the results that are achieved by using Non

Negative Matrix Factorization.

Table 6:Performance Evaluation using NMF

From the above results, the algorithms that produced the best

results were Support Vector Classifier with 97.81%,

Logistic Regression and Support Vector Machine RBF with

97.08% under accuracy score.

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

 Vol. 20, Issue 3, 2024

ISSN 2319-5991 www.ijerst.com

https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

178

Fig 8: Performance Evaluation under no decomposition

The results of each classification technique under different

metric evaluation are as shown above. The above graphs

depicts the results are achieved without any decomposition

techniques.

Table 7:Performance Evaluation under no decomposition

From the above results, the algorithms that produced the best

results were Logistic regression , Random forest, Support

Vector Classifier and Support Vector Classifier RBF with

97.8% under Specificity

VI.CONCLUSION

This research paper reflects the metric evaluation of
different regression techniques on the same dataset.
Among all those different regression techniques Random
Forest came as the best technique. By this metric
evaluation the conclusion is that the Random Forest is
best suitable for the prediction of the price. The same
experimentation can be done with other datasets.

REFERENCES

[1] Effectiveness evaluation of machine learning

algorithms for breast cancer prediction

[2] Ensemble of Machine Learning Fusion Models for

Breast Cancer Detection Based on the Regression Model

[3] Machine Learning Algorithms for Breast Cancer

Prediction and Diagnosis

[4] Research Paper Classification using Supervised

Machine Learning Techniques

[5] Classification Algorithms on Datamining: A Study

[6] XAI Framework for Cardiovascular Disease

Prediction Using Classification techniques.

[7] Hierarchical Medical Classification Based on DLCF

[8]A Python Tool for Machine Learning with Feature

Ranking and Reduction

[9] DataPre-processing for Supervised Leaning

[10] Multi-label Dysfluency Classification

[11] Research on Data Pre-processing in Exam Analysis

System

[12] Multivariate comparison of classification

performance measures

[13] Land Use Land Cover Classification Using Different

ML Algorithms onSentinel-2 Imagery.

[14] Satellite image classification and quality parameters

using ML classifier.

[15]A Review on Data Pre-processing Techniques

Toward Efficient and Reliable Knowledge Discovery

From Building Operational Data

http://www.ijerst.com/
https://doi.org/10.62643/ijitce.2024.v20.i3.pp171-178

