

ISSN 2319-5991 www.ijerst.com

Vol. 19, Issuse.2,April 2023

SMARTCRYPT: SECURE STORING AND SHARING OF TIME

SERIES DATA STREAMS IN IIOT

Dr. Y. Jayababu 1,Puvvala Sai Krishna 2,Abhishek Gedela 3,Golagani Girish Kumar
4,Kasturi Swetha Sri Anjani 5,Rapeti Phaneendra Charan 6

 Article Info

 Received: 07-01-2023 Revised: 09-02-2023 Accepted: 01-03-2023

ABSTRACT

To provide ubiquitous access, scalability and sharing possibilities, the Industrial Internet of Things (IIoT) applications

utilize the cloud to store collected data streams. However, secure storing and sharing of the massive and continuously

generated data poses significant privacy risks, including data breaches. This paper proposes SmartCrypt, a data storing

and sharing system that supports analytics over the encrypted time series data. SmartCrypt enables users to secure

and fine grain sharing of their encrypted data using a novel symmetric homomorphic encryption scheme. Simulation

results show that SmartCrypt reduces query time by 17% and improves throughput by 9% over the benchmark scheme.

INTRODUCTION

In smart manufacturing, Industrial Internet of Things

(IIoT) devices produce a significant amount of time

series data related to production, monitoring and

maintenance that need to be processed and stored. Due

to storage and processing constraints of IIoT devices,

nowadays the data storage and processing

functionalities are mostly shifted to the time series

database in cloud platform, e.g., Azure Time Series

Insight. Further, processing and storing the data in the

cloud platform enhances ubiquitous access, scalability

and sharing possibilities. However, secure data storing

in the cloud poses significant privacy risks, including

unauthorized access of production line efficiency

data. To address privacy risks,

encrypted databases have appeared as a promising

solution.

The main advantage of this approach is that it allows

data owners and third-party services to query

encrypted data while maintaining both functionality

and confidentiality. Recently, research in this domain

has led to several encrypted databases, e.g., relational

databases and batch analytics.

Secure time series data storing in the cloud and sharing

them with third-party services come with unique

performance and challenges that current encrypted

data processing systems fail to meet.

PROFESSOR

DEPT OF COMPUTER SCIENCE AND ENGINEERING

PRAGATI ENGINEERING COLLEGE(A),SURAMPALEM(EAST GODAVARI)A.P,INDIA

http://www.ijerst.com/

To address these challenges, numerous databases have

been devised, particularly for time series data.

However, all these databases incur significant

overhead during encrypted data processing. Besides,

another key challenge in smart manufacturing is that

privacy should co-exist during queries on data

statistics, e.g., finding the standard deviation, which

usually indicates sharing data to be examined by third-

party services. Further, data sharing must be fine

grained as it is often unnecessary to provide third-

parties free access to the data.

Instead, data owners might like to (i) share only

statistical computation of the data, e.g., mean, sum,

max, min, (ii) restrict the granularity at which such

statistical computations are reported, e.g., per-minute,

per hour, (iii) restrict the time interval over which

queries are generated, e.g., February 2021, and (iv) a

combination of earlier three choices. We believe that

support for encrypted query processing should go

together with access control to restrict the scope of

data that users may query. The sharing procedure for

data stream stored in the time series databases is

considerably distinct from traditional databases.

Particularly, in smart manufacturing, various levels

of production process continuously push data streams

to the cloud, where numerous services can subscribe

to access and analyze data streams. Furthermore, often

there is a requirement to aggregate and analyze time

series data from different production processes

collaboratively.

1. LITERATURE SURVEY

TITLE: ―Big data analytics over encrypted datasets

with seabed,‖

ABSTRACT:Today, enterprises collect large

amounts of data and leverage the cloud to perform

analytics over this data. Since the data is often

sensitive, enterprises would prefer to keep it

confidential and to hide it even from the cloud

operator. Systems such as CryptDB and Monomi can

accomplish this by operating mostly on encrypted data;

however, these systems rely on expensive

cryptographic techniques that limit performance in

true ―big data‖ scenarios that involve terabytes of

data or more.

This paper presents Seabed, a system that enables

efficient analytics over large encrypted datasets. In

contrast to previous systems, which rely on

asymmetric encryption schemes, Seabed uses a novel,

additively symmetric homomorphic encryption

scheme (ASHE) to perform large-scale aggregations

efficiently. Additionally, Seabed introduces a novel

randomized encryption scheme called Splayed

ASHE, or SPLASHE, that can, in certain cases,

prevent frequency attacks based on auxiliary data.
TITLE: ―InfluxDB Cloud,‖

ABSTRACT:The recent great technological advance

has led to a broad proliferation of Monitoring

Infrastructures, which typically keep track of specific

assets along time, ranging from factory machinery,

device location, or even people. Gathering this data

has become crucial for a wide number of applications,

like exploration dashboards or Machine Learning

techniques, such as Anomaly Detection. Time-Series

Databases, designed to handle these data, grew in

popularity, becoming the fastest- growing database

type from 2019. In consequence, keeping track and

mastering those rapidly evolving technologies became

increasingly difficult. This paper introduces the

holistic design approach followed for building

NagareDB, a Time-Series database built on top of

MongoDB—the most popular NoSQL Database,

typically discouraged in the Time-Series scenario. The

goal of NagareDB is to ease the access to three of the

essential resources needed to building time-dependent

systems: Hardware, since it is able to work in

commodity machines; Software, as it is built on top of

an open- source solution; and Expert Personnel, as its

foundation database is considered the most popular

NoSQL DB, lowering its learning curve. Concretely,

NagareDB is able to outperform MongoDB

recommended implementation up to 4.7 times, when

retrieving data, while also offering a stream-ingestion

up to 35% faster than InfluxDB, the most popular

Time-Series database. Moreover, by relaxing some

requirements, NagareDB is able to reduce the disk

space usage up to 40%.

TITLE: ―SHAMC: A secure and highly available

database system in multi-cloud environment,‖

ABSTRACT:Data owners outsource their databases

into the cloud to enjoy the quality services provided

by the cloud service providers. However, using cloud

database makes the private data vulnerable and

exposed to the attackers including malicious insiders.

Many researchers try to find the way to encrypt the

cloud database and execute queries securely on the

ciphertext. In this paper, we propose a secure and

highly available cloud database system in the multi-

cloud named SHAMC. Specifically, we use the idea

of secure multiparty computation and homomorphic

encryption to store data and execute queries direct on

the ciphertext. Besides, the entire database is stored

in multiple clouds to avoid service interruption as

well as solve the problems of permanent failure and

vendor lock-in. We implement the prototype of

SHAMC which supports all queries in TPC

Benchmark™ H (TPC-H) on the top of the

commercial cloud. SHAMC is proved to be highly

available and cost-efficient. The evaluation shows it

has an acceptable query overhead which is superior to

other encrypted cloud databases.

2. EXISTING SYSTEM

Most of the existing state-of-the-art security solutions

are designed for relational databases instead of time

series database. Although, the researchers in have

proposed a security mechanism for storing and sharing

of data streams, it is vulnerable to the malleability

attacks. Besides, the existing time series databases

failed to provide suitable access policies to allow data

owners a fine-grain protection during selective and

secure sharing of data streams with third-party

services in multi-user smart manufacturing settings.
Our main contributions in this paper are three-fold.

(i) We design SmartCrypt, a symmetric

homomorphic encryption-based access control

technique for flexible and fine-grain sharing of

encrypted data streams.

(ii) (ii) We introduce a Homomorphic Message

Authentication Code (HomMAC) based verification

technique that supports source authentication and

provides data integrity checks.

(iii) (iii) Our experimental results show that

SmartCrypt significantly improves the query time,

latency and throughput compared to the state-of-the-

art realization, TimeCrypt.

3.2 PROPOSEDSYSTEM

This section provides details about our proposed

scheme.

A. Storing of Encrypted Data In this section, we

illustrate how SmartCrypt encrypts and stores the time

series data streams in the cloud server.

• Symmetric Homomorphic Encryption: Let

mi be a message to be encrypted from the message

space [0, M − 1], i.e., mi ∈ [0, M − 1] and size of mi is

an integer, where i = 1, . . . , n. Let ki be a randomly

generated secret key stream used to encrypt mi , where

ki ∈ [0, M − 1]. To encrypt mi , the data owner

computes the ciphertext as ci = Eki (mi) = (mi

+ ki) mod M. In contrast, to retrieve mi for given ki ,

one can perform decryption as mi = Dki (ci) = (ci − ki)

mod M.

B. Sharing of Encrypted Data In SmartCrypt,

our objective is to allow data streams access

permissions to the third-party services at arbitrary

intervals or temporal ranges like from 13.00-Feb 05 till

12.00-Feb 06 2021. To achieve this, SmartCrypt

partitions the data streams into fixed-length time

segments or chunks of size ∆, e.g., 20 sec. Each chunk

is then encrypted using a separate key from the key

stream, subsequently indexed by the time window of

the chunk. To achieve fine-grain access control and

enable data owners to share encrypted data streams of

desire intervals, we devise a hierarchical key

derivation tree.

SYSTEM ARCHITECTURE .

BelowdiagramdepictsthewholesystemarchitectureofS

martCrypt – Secure Storing and Sharing of Time

Series Data Streams in IIOT.

Activity Diagram

A graphical representations of work process of

stepwise exercises and activities with supportfor

decision, emphasis and simultaneousness, used to

depict the business and operational well-

orderedstreamof parts ina framework

furthermoredemonstratesthegeneral streamof control.

5.SYSTEM IMPLEMENTATION

There are 4 modules:

1. Data Producer: It is the set of IIoT devices, e.g.,

appliances, services, which generate time series data.

The main function of this actor is to ingest time series

data into the cloud server and run SmartCrypt’s client

library, which manages data stream pre-processing
and encryption.

2. Data Consumer: These are entities like third-party

services who are authorized to access data owner’s

time series data and produce an added value, e.g.,

aggregate numerous data streams for monitoring,

analyzing and visualizations.

3. Data Owner: It owns the data stream and grants

access permissions to its generated data stream. Data

owners determine policies to selectively expose their

data streams to data consumers. Based on the defined

access policy, database server grants or denies data

stream access requests.

4. Database Server: It is mainly responsible for storing

encrypted data stream and giving access to data

consumers following policies as defined by the data

owner.

In SmartCrypt, cloud server performs analytical and

statistical queries over the ciphertext and sends back

the ciphertext to the data consumer. Only the data

consumer, which owns the correct keys can decrypt

the ciphertext and obtain statistical result (e.g.,

mean/max/min) and analytic (e.g., trend detection). To

augment fast queries and analytics, SmartCrypt creates

in-memory encrypted indices.

TESTING

The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable

fault or weakness in a work product. It provides a way

to check the functionality of components, sub

assemblies, assemblies and/or a finished product It is

the process of exercising software with the intent of

ensuring that the Software system meets its

requirements and user expectations and does not fail

in an unacceptable manner. There are various types of

test. Each test type addresses a specific testing

requirement.
6.1 TYPES OF TESTING

■ Unit testing

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program inputs produce valid

outputs. All decision branches and internal code flow

should be validated. It is the testing of individual

software units of the application .it is done after the

completion of an individual unit before integration.

This is a structural testing, that relies on knowledge of

its construction and is invasive. Unit tests perform

basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path

of a business process performs accurately to the

documented specifications and contains clearly

defined inputs and expected results.
■ Integration testing

Integration tests are designed to test integrated

software components to determine if they actually run

as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields.

Integration tests demonstrate that although the

components were individually satisfaction, as shown

by successfully unit testing, the combination of

components is correct and consistent. Integration

testing is specifically aimed at exposing the problems

that arise from the combination of components.

■ Functional test

Functional tests provide systematic demonstrations

that functions tested are available as specified by the

business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

7.RESULTS

Fig. 7.1 Home page of the project

Fig. 7.2 This fig showsthe User Register page

Fig7.3 This fig showsthe Dashboard in Admin page

Fig. 7.4 Datanode View Real-Time File Migration

Analysis

Fig7.5 This fig showsthe Activated Users in Admin

page

Fig. 7.6 This fig showsthe Activated Users in Cloud

8. CONCLUSION & FUTURE WORK

In this paper, we proposed SmartCrypt, a data storing

and sharing system that supports analytics over

massive encrypted time series data. We introduced a

novel symmetric homomorphic encryption-based

access control technique tailored for time series data.

SmartCrypt enables the execution of analytics over

encrypted data streams and empowers users to impose

access restrictions on encrypted data streams

considering their access control and privacy

preferences. Our evaluation on real-world datasets

show the feasibility of SmartCrypt as an authorization

service for secure and fine-grain

sharing, and performing analytics on large-scale time

series data.

REFERENCES

[1] A. Papadimitriou, R. Bhagwan, N. Chandran, R.

Ramjee, A. Haeberlen, H. Singh, A. Modi, and S.

Badrinarayanan, ―Big data analytics over encrypted

datasets with seabed,‖ in Proc. of 12th USENIX OSDI,

2016, pp. 587–602.

[2] InfluxDB, ―InfluxDB Cloud,‖ [Online]:

Accessed on February 06, 2021,

https://www.influxdata.com/.

[3] L. Wang, Z. Yang, and X. Song, ―SHAMC: A

secure and highly available database system in multi-

cloud environment,‖ Future Generation Computer

Systems, vol. 105, pp. 873–883, 2020.

[4] Y. Hu, S. Kumar, and R. A. Popa, ―Ghostor:

Toward a secure datasharing system from

decentralized trust,‖ in 17th USENIX NSDI, 2020, pp.

851–877.

[5] L. Burkhalter, A. Hithnawi, A. Viand, H.

Shafagh, and S. Ratnasamy, ―Timecrypt: Encrypted

data stream processing at scale with cryptographic

access control,‖ in Proc. of 17th USENIX NSDI, 2020,

pp. 835– 850.

[6] D. Catalano and D. Fiore, ―Practical

homomorphic message authenticators for arithmetic

circuits,‖ J. of Cryptology, vol. 31, no. 1, pp. 23–59,

2018.

[7] A. Kiayias, S. Papadopoulos, N. Triandopoulos,

and T. Zacharias, ―Delegatable pseudorandom

functions and applications,‖ in Proc. of 20th ACM

CCS, 2013, pp. 669–684.

[8] W. Kleiminger, C. Beckel, and S. Santini,

―Household occupancy monitoring using electricity

meters,‖ in Proc. of ACM UbiComp, 2015, pp. 975–

986

http://www.influxdata.com/
http://www.influxdata.com/

