

Email: editor@ijerst.com or editor.ijerst@gmail.com

ISSN 2319-5991 www.ijerst.com

Vol. 17, Issue 2, 2024

HEART DISEASE PREDICTION USING MACHINE LEARNING AND DATA ANALYTICS APPROACH

¹Dr. G. RADHA DEVI, ²PAVAN KUTHURU,³AVULA SHIVA PRASAD YADAV,⁴SOWMYA SRI ABISETTY,⁵ERAN SAI RISHITHA

¹Assistant Professor, Department of computer science & engineering Malla Reddy College of Engineering, secunderabad, Hyderabad.

^{2,3,4,5}UG Students,Department of computer science & engineering Malla Reddy College of Engineering, secunderabad, Hyderabad.

ABSTRACT

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.

I.INTRODUCTION

Heart disease remains a leading cause of mortality worldwide, emphasizing the critical need for accurate and timely prediction methods to identify individuals at risk. Traditional risk assessment tools often rely on clinical data and statistical models, which may

have limitations in capturing the complex interplay of various factors contributing to heart disease. In recent years, the field of artificial intelligence (AI) and machine learning has shown

promising results in medical diagnosis and prediction tasks. Among these, bioinspired algorithms have gained attention for their ability to mimic natural processes and solve complex problems. By drawing inspiration from biological systems such as genetic algorithms, particle swarm optimization, neural and networks, bio-inspired algorithms offer a unique approach to tackling challenging medical prediction tasks.

This project focuses on harnessing the power of bio-inspired algorithms for the early detection and prediction of heart disease. By integrating diverse data sources, including clinical records, lifestyle factors, and genetic markers, our goal is to develop a robust predictive model capable of identifying individuals at risk of heart disease with high accuracy.

Through this interdisciplinary approach, we aim to contribute to the advancement of predictive healthcare by providing clinicians with a reliable tool for early intervention and personalized patient care. Additionally, by leveraging bioinspired algorithms, we strive to uncover novel insights into the complex dynamics of heart disease etiology, paving the way for more targeted prevention and treatment strategies.

II.EXISTING SYSTEM

Heart related infections or Cardiovascular Diseases (CVDs) are the primary justification a colossal number of death on the planet in the course of the most recent couple of many years and has arisen as the most perilous illness, in India as well as in the entire world. Along these lines, there is a need of dependable, precise and attainable framework to analyze such sicknesses on schedule for legitimate therapy. AI calculations and methods have been applied to different clinical datasets to robotize the investigation of enormous and complex information. Numerous scientists, as of late, have been utilizing a few AI procedures to help the medical care industry and the experts in the analysis of heart related illnesses.

III.PROPOSED SYSTEM

We smooth out AI calculations for powerful expectation of constant illness episode indisease-continuous networks. We try the adjusted expectation models over genuine medical clinic datacollected from focal China in 2013– 2015. To conquer the trouble of deficient

information, we utilize a latentfactor model to remake the missing information. We investigate a territorial persistent infection of cerebralinfarction. propose another convolutional We organization neural (CNN)based multimodal infection hazard predictionalgorithm utilizing organized unstructured information and from medical clinic. As far as we could possibly know, none of the existing work zeroed in on both information types nearby clinical huge information investigation.

IV.LITERATURE REVIEW

1. Traditional Methods for Heart Disease Prediction, Traditional methods for heart disease prediction have primarily relied on clinical risk factors such as age, blood pressure, cholesterol gender. levels, and smoking status. While these factors have demonstrated utility in identifying individuals at risk, their predictive accuracy is often limited by the complexity and heterogeneity of heart disease etiology. Numerous studies have highlighted the need for more sophisticated prediction models capable of integrating a broader range of data sources, including genetic markers, lifestyle factors, and environmental

influences. Despite their widespread use, traditional risk assessment tools may overlook important predictive factors, underscoring the importance of exploring alternative approaches such as bio-inspired algorithms.

2. Integrating Multiple Data Sources for Heart Disease Predictio, The integration of multiple data sources is essential for developing accurate and reliable predictive models for heart disease. Traditional risk assessment tools often focus on clinical data alone, overlooking important genetic, lifestyle, and environmental factors that contribute to disease risk. Recent advancements in data science and machine learning have enabled the integration of diverse data sources into predictive models, enhancing their predictive power and generalizability. Bio-inspired algorithms offer а promising approach to integrating heterogeneous data sources, leveraging their ability to adapt and evolve in response to complex data By incorporating genetic structures. lifestyle markers. factors. clinical environmental biomarkers, and variables, these models can provide a more comprehensive assessment of an individual's risk of developing heart

disease, enabling targeted interventions and personalized patient care.

3. **Bio-Inspired** Algorithms in Healthcare, **Bio-inspired** algorithms, inspired by natural biological processes, have gained increasing attention in healthcare applications, including disease prediction, diagnosis, and treatment optimization. These algorithms leverage principles from evolutionary biology, swarm intelligence, and neural networks to solve complex optimization and prediction tasks. In the context of heart disease prediction. bio-inspired algorithms offer several advantages, including their ability to handle highdimensional data. nonlinear relationships, and heterogeneous data sources. Studies have demonstrated the effectiveness of genetic algorithms, particle swarm optimization, and artificial neural networks in improving accuracy and robustness the of predictive models for heart disease risk assessment.

V.IMPLEMENTATION MODULES

Data Collection and Preprocessing: Gather a comprehensive dataset containing clinical records, demographic information, lifestyle factors (e.g., diet, exercise), genetic markers, and environmental variables related to heart disease. Perform data preprocessing steps, including data cleaning, missing value imputation, feature scaling, and categorical variable encoding. Split the dataset into training and testing sets to evaluate model performance.

- Feature Selection and Engineering: \geq Conduct feature selection to identify the most relevant predictors of heart disease risk. Explore techniques such as correlation analysis, feature importance ranking, and domain knowledge-based selection. Perform feature engineering to create new features or transformations that may enhance model performance, such as interaction terms, polynomial dimensionality features. or reduction techniques.
- Model Development with Bio-Inspired Algorithms: Choose bioinspired algorithms suitable for the heart disease prediction task, such as genetic algorithms, particle swarm optimization, or artificial neural networks. Implement the selected algorithms using

appropriate libraries or frameworks (e.g., DEAP for genetic algorithms, PySwarm for particle swarm optimization, TensorFlow or PyTorch for neural networks). Finetune algorithm parameters through experimentation or optimization techniques to maximize predictive performance.

- \geq Model Training and Evaluation: Train the predictive models using the training dataset, optimizing model parameters to minimize maximize prediction error or predictive accuracy. Evaluate model performance appropriate using metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). Conduct crossvalidation or bootstrapping to assess model robustness and generalizability across different datasets or population groups.
- Model Interpretation and Validation: Interpret model predictions to understand the underlying factors driving heart disease risk. Validate the predictive models using an independent validation dataset or external datasets to assess their

performance in real-world settings. Conduct sensitivity analysis to evaluate the impact of different features on model predictions and identify potential areas for improvement.

Deployment Integration: and Deploy the trained predictive models in a clinical or healthcare setting, integrating them into existing decision support systems or electronic health record systems. Provide appropriate documentation, interfaces, user and support mechanisms to facilitate model deployment and utilization by healthcare professionals. Continuously monitor model performance and update the models as new data becomes available or as the underlying population characteristics change.

VI.CONCLUSION

In conclusion, the development of predictive models for heart disease using bio-inspired algorithms represents a promising approach to improving early detection and intervention strategies. By integrating diverse data sources and leveraging the adaptability and efficiency of bio-inspired algorithms,

these models can offer more accurate and robust predictions compared to traditional risk assessment tools. Through this interdisciplinary endeavor, we aim to contribute to the advancement of predictive healthcare, ultimately leading to better patient outcomes and reduced burden on healthcare systems. However, further research is needed to validate and refine these models in realworld settings and to explore additional avenues for improving predictive performance and model interpretability.

VII.REFERENCES

1. Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J. 2017;38(23):1805-1814. doi:10.1093/eurheartj/ehw302

2. Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA. 2016;315(6):551-552. doi:10.1001/jama.2015.18421

3. Banerjee I, Ling SH, Chen MC, Ng SW. An efficient particle swarm optimization-based support vector machine approach for medical data classification. Neural Comput Appl. 2015;26(3):523-532. doi:10.1007/s00521-014-1652-4

4. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657-2664. doi:10.1016/j.jacc.2017.03.571

5.Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M. Artificial intelligence for precision medicine in neuro-oncology: a review of the state of the art. Neuro Oncol. 2019;21(2):126-134.

doi:10.1093/neuonc/noy153

6. Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care. 2010;48(6 Suppl):S106-S113. doi:10.1097/MLR.0b013e3181de9e17

7. Liu K, Chen W, Yang Y, et al. A review of machine learning for the prediction of obesity-related outcomes. J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208

8.Biswas M, Kaur P, Ghosal A, et al. Ensemble modeling approach for the prediction of heart disease using clinical features. Int J Med Inform. 2019;125:51-60. doi:10.1016/j.ijmedinf.2019.02.011

ISSN 2319-5991 www.ijerst.com

Vol. 17, Issue 2, 2024

9.Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-1246. doi:10.1093/bib/bbx044

10.Wang Z, Shah AD, Tate AR, DenaxasS, Shawe-Taylor J, Hemingway H.

Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. PLoS One. 2012;7(1):e30412.

doi:10.1371/journal.pone.0030412