
 
 

 
 

 
                                                                                                                                                        ISSN 2319-5991 www.ijerst.com 

Vol. 4, Issuse.4,Oct 2016 

 

 

 

 

 

http://www.ijerst.com/


 
 

 
 

 
                                                                                                                                                        ISSN 2319-5991 www.ijerst.com 

Vol. 4, Issuse.4,Oct 2016 

 

 

 

 

Using the Recursive Method in OCTAVE and FEMM 

Emmanuel  by Tom Thampy  Rajath Chandrashekar *, Raj Rivington 

Additive and Smart Manufacturing Processes, Central Manufacturing Technology Institute, Bangalore, 560022, India 

*Corresponding author: Emmanuel Gospel Raj Rivington, 
 

ABSTRACT:  

When a precise amount of flow or pressure regulation is needed, a proportional solenoid valve is the tool of choice. 

Designing the valve component, solenoid core, and coil for precise input and output ratings is necessary for 

manufacturing such valves. Magnetic qualities, application specific criteria like medical grade, temperature 

compatibility, etc. must all be taken into account when deciding on the materials for each part of the solenoid valve. To 

achieve proportional control, a linear relationship between the control input and the output of the proportional solenoid 

valve is essential. Achieving these goals relies heavily on optimizing the magnetic core. In order to achieve the required 

linearity in the plunger movement without sacrificing the actuation force on the plunger for a given size of the solenoid, 

it is essential to optimize the core geometry of the proportional solenoid. Based on performance criteria such as flow rate, 

pressure, and control needs such as the solenoid voltage and current ratings, a proportional solenoid valve is created for 

mass flow control in low pressure applications like medical oxygen ventilators. Valve components, such as medical-

grade stainless steel with the necessary magnetic characteristics, are made from materials chosen on the basis of 

application needs. The optimal core shape of a proportional solenoid valve is calculated using a recursive method-based 

optimization methodology. In this paper, we show that the calculated values of plunger displacements from different 

offsets of 0 mm, 1 mm, and 2 mm from the reference position in a total stroke length of 5 mm closely match the 

experimental results obtained from the proportional solenoid valve manufactured based on optimization results. 
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1. Introduction 
 

The output flow or pressure of a proportional solenoid valve varies linearly with the input current or voltage. They find 

widespread usage in flow control settings that need accurate regulation of a metered flow of gas or liquid. Latching 

solenoids and proportional solenoids have distinct underlying geometries. Control input to the solenoid coil determines 

whether a latching solenoid valve is completely open or fully closed. Therefore, they function in two modes: full flow 

and no flow. On the other hand, proportional solenoids are preferred over latching types when a continuous range of 

motion is required for the plunger. To provide linear variation in valve output in terms of output flow or pressure, a 

well-designed proportional solenoid creates a linear displacement of the plunger.  the output pressure that was 

achieved. Accuracy in the performance of proportional solenoids for automated valve control applications is determined 

primarily by the effective volume of the proportional solenoid, as well as the material and geometry of the solenoid core  
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2]. Because of the difficulty in designing a linear 

proportional solenoid valve, many scholars have 

proposed complex methods to improve the design of 

the solenoid and its use in valves [1, 3]–[8]. The basic 

geometries of an ON/OFF (or) latching solenoid are 

well-suited to the use of the standard force formulae [3, 

9] available for computing the force on plunger for 

solenoids. It is impossible to use these equations [4, 9] to 

study the geometry of a proportional solenoid. This 

article details the creation of a direct-acting proportional 

solenoid valve for use in gas flow control and analyzes 

the factors that went into its design. 

 

several variables, including magnet material, core 

shape, spring choice, valve geometry, and control. Its 

practical, recursive approach to solenoid optimization 

makes it a helpful summary of our knowledge of 

proportional solenoid design, development, and 

optimization. The combined power of the FEMM and 

OCTAVE software is used to visually depict the 

impact of different magnetic core diameters and the 

iterative optimization of the core shape. The 

effectiveness of the proportional solenoid is evaluated 

using FEM-based analysis to determine the best 

possible shape. In order to verify the findings, a 

working model of the proportional solenoid valve is 

built and tested. 

2. The Proportional Flow Control Valve's Fundamental 

Parts 

The components of the proportional solenoid valve are 

shown in cross-section in Figure 1. 

 

  

Designing a solenoid entails thinking about windings, 

core materials, and optimizing the core's proportional 

shape; designing a valve requires thinking about an 

orifice and a seat. 

2.1 Winding Configuration 

The flux produced by the winding of the proportional 

solenoid is sufficient to generate force, which in turn 

displaces the plunger and opens the valve. In contrast 

to an ON/OFF solenoid, a proportional solenoid does 

not latch during operation, hence it is crucial that the 

attractive force between the plunger and the stator be 

adequate and controlled over the whole range of the 

solenoid's stroke. 

P = I2R (or VI (watt) (1) is the formula used to 

determine the amount of power used by the solenoid. 

where, 

I – Solenoid Current (A) 

R – Resistance of the solenoid (Ω) 

V – Voltage across the solenoid (V) 

 
Force produced by the solenoid on the plunger[1], [9] 

 

(NI)g
2

μ0Ag 

F = 
2g2 (2) 

 
 

 

 

 

 

 

 

Figure 1 Cross section view of the proportional solenoid valve 

A proportional valve consists of a solenoid, a 

magnetic core that acts as a low-reluctance path for the 

magnetic field, a magnetic plunger that moves when the 

solenoid is excited, a valve body with a valve closure 

mechanism that is actuated by the solenoid, and a spring 

that helps to keep the valve closed when the solenoid is 

unexcited. The stator core is hollow and houses a 

cylindrical plunger that travels in the direction of the 

stator receiver core, which is tapered.

where, 

(NI)g – Ampere turns required (A) 

μ0 – Magnetic permeability of free space or vacuum 

(H/m) or (N/A2) 

Ag – Area of the plunger surface (m2) 

g – Length of the air gap (m) 

 
(NI) 24π x10−7x π x (5.5 x10−3)2 

8 = 
2 x(1 x10−3)2 

 
8 x 2 x (1 x10−3)2 

(NI)g = √
4π x 10−7 x π x (5.5 x10−3)2 

 
(NI)g = 366 ampere turns(AT) 

 
Magnetic field intensity across the air gap 



 

 

 

cross section along the axial axis at the inner end [1, 2, 4]. Two Teflon rings [1] are used to decrease friction between the 

metal plunger and the plunger guide, and two circumferential grooves are provided on the plunger at appropriate 

positions to accept the rings. 

Magnetic Flux density in the air gap, require number of turns 

 

Bg = μ0 x Hg (4) 

 
= 4π x10−7x 366x103 

 
Bg = 0.46 tesla(or) weber/sq. meter 

 
549 

N = 
0.2 

 
 

 
(9) 

 

 
Total flux in the air gap, 

 
φ

g 
= Bg x Ag (5) 

 
= 0.46 x π x (5.5x10−3)2 

 
= 0.46 x π x (5.5x10−3)2 

 

φ
g 

= 43.7 weber 

To produce the same flux throughout a magnetic core of same area Ag and a length of 200 mm: 

 

Ignoring the fringing effect, the flux density in the core, Bc = Bg = 0.46 tesla 

 
Magnetic field intensity across the core 

N = 2745 turnsGeometry of the Magnetic 

Core 

For a constant current, a proportional solenoid must 

deliver a constant force over its whole stroke length. 

This is made possible thanks in large part by the 

solenoid's central core and plunger's shape. In order for 

the solenoid to demonstrate linearity and repeatability 

of the control motions of the plunger, it is necessary to 

adjust the control parameters D, t, and P, as shown in 

Figure 2 [2]. P is the depth of the conical top of the 

plunger, D is the corner point on the outside border of 

the cone, and t is the corner point on the top of the cone. 

 

 
 

Bc 

Hc = 
c 

 
0.46 

= 
1000x4πx10−7 

Hc = 366.1A/m 

 
MMF required 

 

 
(6) 

 

(NI)c = Hcx length (7) 

 
= 366.1x 200x10−3 

 
(NI)c = 73.2 AT 

 
Total Ampere turns required: 

 
(NI)total = (NI)c + (NI)g (8) 

 
= 73.2 + 366 

 

Figure 2 Cross section of the proportional solenoid depicting the 

cone design parameters 

The typical Force-Displacement characteristic of a 

As may be seen in Figure 3 (a), a proportionate 

solenoid. In a perfect world, the solenoid's force for a 

given current for plunger displacement is constant over 

the whole stroke length [3, 6]. The current via the 

solenoid increases this force. A linear force, with a 

slope proportional to the spring constant, is generated 
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by the restraining spring sandwiched between the 

plunger and the receiver core. The 

 

(NI)total 

 

  

 

= 439.2 AT 

 

points where the solenoid's force meets the spring's 

force Plunger equilibrium points are shown by 

curves. 

 

Adding an extra 25% to account for losses, 

 

Total (NI) = 549 A.T.  

Having a 0.2 A (or 200 mA) control current would 

shifts for varying solenoid current levels [2, 6]. Figure 

3 (b) displays the resulting connection between 

solenoid current and plunger displacement. 

 

The Control Cone Is Optimised Recursively 

Adjusting the settings on the cone of control (D, 

 

linear properties of the plunger movement relative to 

the control input from the solenoid, t, and P are 

crucial. Comparative study of force calculation 

methods for the 

where, 

 

  

∑ X=1(F(n) − Favg) 

 

f(s) = 

 

x 

 

  

Finite Element Method Magnetics (FEMM) software 

is used for the plunger [2, 7, 10]. The specifics of the 

mesh's configuration are shown below. 

 

Type of Mesh: Triangles 

 

Adjustable Mesh Size 

 

The optimization of the design parameters is made 

easy using the recursive technique, which takes just 

two rounds before yielding the best possible 

outcomes. The supplied solenoid is developed with 

the configuration shown in Fig. 2, optimized for the 

three independent variables of D, t, and P. However, 

construction of proportional solenoids with alternative 

configurations is conceivable with many parameters 

that can be optimized. The recursive procedure 

iteratively determines the best place for each 

parameter, starting with a broad search and becoming 

more specific with each step. 

 

 

 

 

  
a. Force-Displacement characteristics 

 

 

b. Displacement-Current characteristics 

Figure 3 Typical characteristics of a proportional solenoid 

The optimization of the cone parameters of the 

proportional solenoid is based on minimizing the 

objective function f(s) [2], [6], [10] shown below: 
f(s)   – Objective function (N) 

x – Number of plunger steps 

F(n) – Force on plunger on nth step (N) 

Favg – Average force on plunger across the full stroke 

length (N) 

 

3.1. First iteration 

Each recursive algorithm iteration for optimizing the 

proportional solenoid shape involves a series of stages 

to determine the parameters' near-optimal values in 

the given order (D, t, and P). The Force vs. 

Displacement curves are obtained by moving the 

plunger from the tip of the cone to a distance of 4 mm, 



 

 

 

with a step size of 0.5 mm, for each location of D 

between the limits of -5 mm and +5 mm, as 

illustrated in Figure 4. Figure 5 depicts the force 

versus displacement curves for a range of D values. 

Having D be the corner point at about -5 mm 

demonstrates a high force near the tip of the 

stationary core because of the large area made 

available by virtue of the position of D, and a 

decreasing force as the plunger moves deeper inside 

the core because of the increased area of low 

reluctance core appearing in the radial direction 

rather than the axial direction. As the receiver cone 

becomes acute and conical as point D rises, the force 

exerted on the plunger over its whole stroke becomes 

modest. Figure 6 shows that the objective function 

has its highest values when D is very far from the 

reference point, and its lowest value of roughly 0.6 

when D is very little more than 1 mm above the 

reference position. 

 

 
Figure 4 Optimization of D in the first iteration 



 

 

 

  

Figure 5 Plunger Force vs. Plunger Displacement characteristics for 

various positions of D in the first iteration 
 

 
Figure 6 Objective function and Average force at various positions of D 

in the first iteration 

In the following recursive iteration, we'll optimize t within 

the constraints of 0 mm and 1.8 mm, fixing the optimum 

value of D at 1 mm acquired in the previous stage. As can 

be seen in Figure 7, when D is set to 1 mm, t is moved in 

increments of 0.36 mm, from 0 to 1.8. Figure 8 shows many 

plots of force against plunger displacement, and the one 

for t=1.8 seems flatter than the others. As can be seen in 

Figure 9, the Objective function is similarly at its lowest at 

a t value of 1.8 mm. 

Figure 7 Optimization of t in the first iteration 

Figure 8 Plunger Force vs. Plunger Displacement characteristics for 

various positions of t in the first iteration 

The positions of D and t are fixed at 1 mm and 1.8 mm 

respectively from their references and the parameter P is 

next optimized. 

 

 
Figure 9 Objective function and Average force at various positions of t 

in the first iteration 

Because P lies on the axis of the cylindrical 

plunger, shifting P inside the plunger's 

structure results in a hollow conical shape on 

the plunger's surface opposite the receiver 

core. P changes from -5 mm to 0 mm in 1 mm 

increments, as shown in Figure 10.

 
Figure 10 Optimization of P in the first iteration 

The force characteristics for various positions of P can 

be seen in Figure 11 and the objective function 

characteristics in Figure 12. The optimization of P would 



 

 

 

 

have a major effect on minimizing the plunger's latching 

propensity when it approaches the stationary receiver core 

beyond 3.5 mm. 

Figure 11 Plunger Force vs. Plunger Displacement characteristics for 

various positions of P in the first iteration 
 

Figure 12 Objective function and Average force at various positions of 

P in the first iteration 

TABLE 1 displays the summary of parameters, 

constraints, and optimization outcomes from the first 

iteration of the recursive approach. Figure 13 depicts 

the final result of the first iteration in terms of 

geometry. 
Table 1: Optimization results obtained from the First Iteration of the 

recursive method 
 

Parameter Min Max Step size 

(mm) 

Optimal Min. F(s) Average force 

at Min. F(s) 

D -5 5 2 1 0.59828 6.9384 

t 0 1.8 0.36 1.8 0.59828 6.9384 

P -5 0 1 -2 0.48351 6.8065 

 

Figure 13 Geometry of proportional solenoid core obtained from First 

iteration of recursive optimization. 

3.2. Second Iteration 

The optimum positions of the geometrical parameters have 

been roughly estimated by the first iteration of the 

recursive technique. To get reliable results of the 

optimization parameters, a second iteration is often 

necessary. See TABLE 2 for a complete breakdown of the 

updated requirements, optimum values, and resulting 

objective function for the parameters. In order to do a 

thorough search for the precise positions of the parameters, 

fresh restrictions are introduced with small step sizes 

around the previously achieved best findings. From the 

first row of TABLE 1 to the final row of TABLE 2, the value 

of the Minimal Objective Function drops from around 0.59 

to 0.15. 
Table 2: Optimization results obtained from the Second Iteration of the 

recursive method 
 

Paramete 

r 

Mi 

n 

Ma 

x 

Step size 

(mm) 

Optim 

al 

Min. 

F(s) 

Average force at Min. 

F(s) 

D 0 2 0.4 0.4 0.40518 7.131 

t 1.3 1.8 0.1 1.7 0.18655 6.9748 

P -3 -1 0.2 -1 0.14875 7.0161 

 

The recursive optimization of D, t, and P yielded the 

force curves and objective function curves seen in 

Figures 14–19. Parameters P = +0.4 mm, t = +1.7 mm, and 

P = -1 mm are shown to be ideal. Figure displays the 

ideal proportional core shape of the solenoid. 20. 
 

Figure 14 Plunger Force vs. Plunger Displacement characteristics for 

various positions of D in the second iteration 
 

Figure 15 Objective function and Average force at various positions of 

D in the second iteration 



 

 

 

 
 

 

 

 

 

 

 

 
Figure 16 Plunger Force vs. Plunger Displacement characteristics for 

various positions of t in the second iteration 
 

Figure 17 Objective function and Average force at various positions of t 

in the second iteration 
 

 
Figure 18 Plunger Force vs. Plunger Displacement characteristics for 

various positions of P in the second iteration 
 

Figure 19 Objective function and Average force at various positions of 

P in the second iteration 

Figure 21 shows the proportional solenoid valve that is 

developed with the optimized core geometry for gas flow 

at a maximum pressure of 3 Bar. 
 

 
Figure 20 Geometry of the optimized proportional solenoid core 

obtained from second iteration of recursive method. 

2. Performance testing and results 
 

If you want top performance from your proportional 

solenoid, you need to make sure its shape is optimum. 

Constant force for constant current through the 

solenoid winding has been achieved by optimizing 

the proportional solenoid shape across the range of 

the 4 mm stroke length during which the solenoid is 

designed to function. 

 

Figure 23 displays the load line and force curves of 

the optimized solenoid for different constant currents. 

The load line represents the force created by the 

restraining compression-spring with a spring constant 

of 3.6 N/mm. 
 

 
 

Figure 21 The developed proportional solenoid valve for flow control 
 

 
Figure 22 Magnetic flux density plot of the optimized proportional 

solenoid geometry in FEMM 

The characteristics between solenoid current and the 

plunger displacement are shown by finding the points 

where the load line and the force curves overlap (Figure 

24). 

Figure 23 Force vs Displacement characteristics of the Proportional  



 

 

 

 

 
 

Figure 24 Plunger displacement vs solenoid current characteristics 

with 0 mm offset of the restraining spring 

Regardless of the spring's starting offset or the plunger's 

beginning location, the relationship between the control 

current and the plunger displacement stays the same for 

a well-tuned proportional solenoid. 

 

Figure 25 depicts the force curves of the proportional 

solenoid and the load line of the spring with a 1 mm 

offset. Plunger displacement and solenoid control 

current exhibit the characteristics shown in Figure 26. It's 

important to keep in mind that the offset position of the 

spring is only 1 mm to begin plunger displacement. 

 

 
 

Figure 25 Force vs Displacement characteristics of the Proportional 

Solenoid and the restraining spring (1 mm offset) 

 

Figure 26 Plunger displacement vs solenoid current characteristics 

with 1 mm offset of the restraining spring 

Figure 27 depicts the proportional solenoid force curves 

and the load line of the spring that is off by 2 mm. Figure 

28 depicts the relationships between the solenoid control 

current and the plunger displacement. The 2 mm offset 

location of the spring is where the plunger's displacement 

really begins.

 

 
Figure 27 Force vs Displacement characteristics of the Proportional 

Solenoid and the restraining spring (2 mm offset) 

Figure 29 depicts the effective plunger displacement in the 

optimized model of the proportional solenoid with zero, 

one, and two millimeter offsets, respectively. It's clear that 

the traits are comparable to one another. It's important to 

keep in mind that perfect qualities include having perfectly 

straight and matched curves. 
Figure 28 Plunger displacement vs solenoid current characteristics 

with 2 mm offset of the restraining spring 

 
Figure 29 Effective plunger displacement vs solenoid current 

characteristics of the optimal design with various offsets 
 

 
Figure 30 Magnetic flux density plot of the flat non-optimal geometryin 

FEMM 



 

 

 

 

When the design isn't ideal, the control characteristics may not be as neat and tidy as you'd want. Figure 30 and Figure 

32 both depict non-optimal designs, one of which is flatter than the best form while the other is sharper. 
Figure 31 Effective plunger displacement vs solenoid current characteristics of the flat non-optimal design with various offsets 

 

 
Figure 32 Magnetic flux density plot of the sharp non-optimal geometry in FEMM 

The characteristics of the two non-optimal designs are shown in Figure 31 and Figure 33. An undesirable widening 

in characteristics can be seen in Figure 31 corresponding to a flat non-optimal geometry. It can be seen in Figure 33 that 

two of the curves are close to each other with lesser displacement than optimal and the third curve is deviating. 

The Plunger displacement vs current characteristics is experimentally obtained from the manufactured proportional 

solenoid and compared with the computed characteristic of the optimized geometry as shown in Fig 34. 
 

Figure 33 Effective plunger displacement vs solenoid current characteristics of the sharp non-optimal design with various offsets 



 

 

 

Figure 34 compares the experimental displacements from initial offsets of 0 mm, 1 mm, and 2 mm with the 

corresponding computed displacements with the aim of achieving an optimized geometry of proportional solenoid to 

produce linear displacement for coil currents regardless of the initial offset.  

 
Figure 34 Experimental plunger displacement and computed plunger displacement 

3. The graphs indicate good agreement between 

measured and calculated values, verifying the 

recursive methodology used in the suggested 

optimization strategy. Due to the plunger being 

towards the far end of the proportional cone, the 

actual displacement with 0 mm offset is slightly 

smaller than the computed displacement. Force on 

plunger tends to be larger and displacement greater 

as offset increases, i.e. when the plunger position is 

well within the proportional cone. When the 

plunger moves too far within the proportional cone, 

the displacement flattens because the air gap flux is 

now more laterally oriented than axially. This 

happens for increasingly large offsets. 

Conclusion 

The methodological framework for creating a 

proportional solenoid valve has been detailed in this 

study. We have covered the fundamentals of 

proportional solenoid functioning, as well as material 

choices and power supply-related design 

considerations. This paper focuses mostly on optimizing 

the proportional core, since this is one of the most 

important elements in developing a proportional 

solenoid. Due to its efficiency in generating 

optimization results in less than three rounds, the 

recursive technique of optimization is employed to 

determine the optimal shape of the proportional core of 

the solenoid valve. Diagrams and graphs show the step-

by-step procedure for optimizing the geometrical 

parameters of the proportional core. The best-possible 

hardware implementation of the proportional solenoid 

valve is built and evaluated. The findings show that 

linear displacement for the solenoid current was seen 

throughout a range of offsets when the proposed 

approach of optimizing a proportional solenoid was 

used. This technical study details a method for 

designing proportional solenoid valves that may be 

used in a wide range of settings. 

. 
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