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INVARIANTS OF THE PLANE ELASTICITY
TENSORS

A new technique is used to find the set  of five well known polynomial invariants, under O(2), of
the space of plane elasticity tensors. An elementary argument shows that this set forms an
integrity basis for the  space.
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INTRODUCTION
Let  denote the vector space of two-
dimensional elasticity tensors C . With reference
to a basis, a member of this space is denoted by

ijklC , where the subscripts take values 1  or 2
only and the following usual symmetry conditions
are satisfied,

.klijijlkjiklijkl CCCC 

Let )2(O  be the group of orthogonal
transformations on 2R . A function )(C  defined
on laE  is said to be invariant if )()( CC  Q
where for )2(OQ  and laEC

.)( ijklslrkqjpipqrs CQQQQQ C

A finite set of invariants is called a functional
basis if every invariant can be expressed in terms
of members of this set. A finite set B  of polynomial
invariants is called an integrity basis if every
polynomial invariant can be expressed as a
polynomial function in terms of members of B .
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Several authors, using different techniques,
have found the following five polynomial invariants,
or equivalent, of the space of plane elasticity
tensors (Zheng, 1994; Blinowski et al., 1996;
Vianello, 1997; Vannuchi, 2005; and de Saxe
et al., 2013).
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Vianello (1997) has proven that the set
},..,,{ 521 III  is an integrity basis for the space

.laE

In this brief note, we use a technique, due to
Dieulesaint and Royer (2000), which relies on the
diagonalization of the rotation matrix. It furnishes
us with a valuable criterion in that a monomial in
the transformed space will be an invariant if and
only if the number of ones in the subscripts equals
the number of twos. This not only facilitates
evaluation of the above five invariants but also
provides an elementary proof of the integrity
theorem. It is also hoped that the technique
presented in the present paper will be helpful in
treating the, as yet, unsolved problem of finding
an integrity basis for the space of three-
dimensional elasticity tensors, see de Saxe et al.
(2013).

INVARIANTS OF PLANE
TENSORS
A tensor function defined on  will be invariant
under )2(O provided it is invariant under the action
of )2(SO  followed by a reflection with respect to
the basis vector, 1e . Transformation matrix )(Q
for a rotation through an angle   is,
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Matrix Q
~  representing the reflection about 1e

is,
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To proceed further, we need to diagonalize
)(Q . Same technique was employed by Ahmad

and Rashid (2009) to investigate invariants of the
elasticity tensors under ).3(SO  Matrix )(Q  has

eigenvalues  ii ee ,  with respective
eigenvectors,
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These eigenvectors become new basis
vectors with respect to which now complex elastic
moduli ijkl  are given by the transformation
equation,

where pib  , etc., are elements of the matrix ,B

.
1

1

2

1










i

i
B

Rotation matrix )(D   has become diagonal,
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Elastic moduli ijkl  before and after rotation are
related by,

,)( 21
ijklijkl e   

where

1 = number of ones among ijkl,

2 = number of twos among ijkl.

Hence  will be invariant if and only if, among
the subscripts, the number of ones and twos are
equal. We immediately get the following set of
invariants.

,,, 2222111131212211221   TTT

., 1111
2
12222222

2
21115211112224   TT

Above invariants are essentially the same

as 521 ,..,, III as indicated by the following
relations,
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A monomial M  in components of   will consist
of factors of the form p

ijkl  and will transform under
)2(SO  to Mi k

k
k

k })(exp{ )(
2

)(
1    where

)(
1

k  and )(
2

k  respectively denote the number of
ones and twos in the thk   factor. Thus a
monomial will be invariant under )2(SO  if and only
if the total number of ones and twos is equal. In
the laboratory frame sum of two or more
components of C  may be invariant while
separately they may not be such. However, in the
transformed frame, each term of a polynomial
invariant must be invariant on its own.

From the transformation matrix (3), it is clear
that the following relations exist among pqb ,

.2,1,

,2,1,

21
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where star denotes complex conjugation. The
above relations lead to the conclusion that an
interchange, 21 , among the subscripts of any
component of   yields its conjugate. For
example,
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Thus all invariants 51,..,TT  are real. The above
argument has established invariance with
respect to ).2(SO  However since

22

~
ee Q ,

an even number of twos in the subscripts of
invariants ensures invariance with respect to

).2(O

Some of the above results are similar to the
ones obtained by Verchery and Vannucci
(Verchery, 1979; Vannuchi, 2005; and Vannuchi
and Verchery, 2010). This method starts with the
transformation of a vector ),( yxx  to a complex
contravariant vector ),( 21 XX  as
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The above transformation is interpreted as a
change of frame with the transformation matrix
given by

The contravariant components of  the
elasticity tensor transform under a rotation
governed by a diagonal matrix which easily leads
to invariants equivalent to the ones found above.
Thus the two techniques are similar in that they
introduce a complex change of frame to make
the rotation matrix diagonal. This is rewarded
by the fact that a single component of the
elasticity tensor in the new frame represents a
polynomial in the laboratory frame. This fact
plays a crucial role in the next section when we
combine it with our result that any monomial in
the transformed frame is an invariant provided
the subscripts are evenly divided among ones
and twos.



45

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2016 Faiz Ahmad, 2016

INTEGRITY BASIS
We shall show that the set, T , of five polynomial
invariants },,,,{ 54321 TTTTT  forms an integrity
basis for laE  under the group ).2(O  It is clear
that all invariants of degree up to and including 3
are expressible in terms of members of I . We
shall prove the general result by induction.
Suppose the following statement is true.

Every polynomial invariant of  under )2(O
of degree up to and including k is expressible as
a polynomial in terms of members of .

Now an invariant of degree 1k  must contain
an expression with 1k  factors ijkl  with various
permutations of ijkl  with the stipulation that half
of the total number of indices will be ones and
the other half will be twos. If an interchange of,

21 , does not leave it unchanged, we add to it
an expression found by this interchange. The
result will be a real invariant of degree .1k  For
example if 5k  then we can form an invariant
of degree 6  in the following manner..

.1111211112221122
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2222122221112211
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





Since 22111122   , we can factorize the above
expression as,

)

(
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


 ,

)5.degreeofinvariantan(1T

By our assumption, the expression in
parenthesis can be expressed in terms of
members of T , therefore the result holds so far
as the above example is concerned. We shall
apply a similar technique for the general case.
There are various possibilities.

• One of the factors in the first part contains
equal number of ones and twos, i.e., it is

.or 21 TT  In this case, the invariant of degree
1k  will become a product of 1T  (or )2T  and

an invariant of degree k . Hence the result
holds in this case.

• The invariant 1kT  is of the form,

,.22221111211111121 ccT srqp
k  

where srqp ,,,  are nonnegative integers. If both
qp and  are different from zero then it is possible

to write .)1degreeofinvariant(an41  kTTk

If both sr and  are different from zero, then
.)1degreeofinvariant(an31  kTTk

• The only remaining case is

.11112221222211121
spsp

kT  

Since the degree of the invariant is ,1k   we
have,

1 ksp .

Also the number of ones must be one half the
total in the first part. This leads to,

).1(23  kp

Hence we have,
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k
sp  An invariant of this form will

exist only if 3  is a divisor of the degree .1k  Let
mpms 2,   where 1m  is a positive integer..
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From the right side of Equation (8) a factor
2

4322221111
2
2221

2
1112 TT  can be taken out

leaving an invariant of degree 563  km
which by assumption is a polynomial function of
members of .T
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Thus the set },..,,{ 521 TTT  forms an integrity
basis for
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