


235

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

IMPLEMENTATION OF LOW LATENCY AES BASED
ON OBFUSCATING TECHNIQUE

High-level transformations have been known for a long time and have been used in a wide range
of applications, such as pipelining, interleaving, folding and unfolding and have been used in
synthesis of DSP systems. These techniques can be applied at the algorithm or the architecture
level to achieve a tradeoff among different metrics of performance, such as area, speed, and
power. In fact, high-level transformations naturally provide a means to obfuscate DSP circuits
both structurally and functionally. Structural obfuscation is achieved by structural modification,
which is realized by altering the structure of a DSP circuit by using high-level transformations.
This is a so-called passive technique, which does not directly affect the functionality of the DSP
circuit. Functional obfuscation is achieved by functional modification, which is realized by
encrypting the normal functionality of a DSP circuit with a key. The DSP circuit cannot function
correctly without the key. This is an active technique, which directly alters the functionality. High-
level transformations alter the structure of a DSP circuit, while maintaining the original functionality.
For instance, different folding sets lead to a family of folded architectures this can be exploited
for structural obfuscation. As a result, circuits with the same functionality may have very different
structures. Furthermore, high-level transformations may lead to architectures whose
functionalities are not obvious. Take an extreme case for example, many filters can be folded
into one multiply-accumulator (MAC), but their functionalities are not the same. In other words,
one MAC with proper switches can implement many digital filters. In this project a fft with two
different radixes are implemented and comparison is carried out in terms of area, power and
delay by maintaining the tradeoff.

Keywords: AES, Symmetric, Obfuscation

INTRODUCTION
DSP, or Digital Signal Processing, as the term
suggests, is the processing of signals by digital
means. A signal in this context can mean a
1 M.Tech Student, Department of E.C.E., Chirala Engineering College, Ramapuram Beach Rd, Chirala, Andhra Pradesh 523157, India.
2 Associate Professor, Department of E.C.E., Chirala Engineering College, Ramapuram Beach Rd, Chirala, Andhra Pradesh 523157,

India.

Int. J. Engg. Res. & Sci. & Tech. 2015

ISSN 2319-5991 www.ijerst.com
Vol. 4, No. 4, November 2015

© 2015 IJERST. All Rights Reserved

Research Paper

number of different things. Historically the origins
of signal processing are in electrical engineering,
and a signal here means an electrical signal
carried by a wire or telephone line, or perhaps by

I N Bindhu Madhavi1* and S A J Mani Kumar G2

*Corresponding Author: I N Bindhu Madhavi bindu.immedisetty@gmail.com



236

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

a radio wave. More generally, however, a signal
is a stream of information representing anything
from stock prices to data from a remote-sensing
satellite.

HIDING FUNCTIONALITY BY
HIGH-LEVEL
TRANSFORMATIONS
High-level transformations have been known for
a long time and have been used in a wide range
of applications, such as pipelining, interleaving,
folding and unfolding, and have been used in
synthesis of DSP systems. These techniques
can be applied at the algorithm or the architecture
level to achieve a tradeoff among different metrics
of performance, such as area, speed, and power.
However, the use of high-level transformations
from a security perspective has not been studied
before. In fact, high-level transformations naturally
provide a means to obfuscate DSP circuits both
structurally and functionally. Structural
obfuscation and functional obfuscation are
defined as follows:

• Structural obfuscation: achieved by structural
modifica-tion, which is realized by altering the
structure of a DSP circuit by using high-level
transformations. This is a so-called “passive”
technique, which does not directly affect the
functionality of the DSP circuit.

• Functional obfuscation: achieved by functional
modification, which is realized by encrypting
the normal functionality of a DSP circuit with a
key. The DSP circuit cannot function correctly
without the key. This is an “active” technique,
which directly alters the functionality.

High-level transformations alter the structure
of a DSP circuit, while maintaining the original
functionality. For instance, different folding sets

lead to a family of folded architectures; this can
be exploited for structural obfuscation. As a result,
circuits with the same functionality may have very
different structures. Furthermore, high-level
transformations may lead to architectures whose
functionalities are not obvious. Take an extreme
case for example, many filters can be folded into
one multiply-accumulator (MAC), but their
functionalities are not the same. In other words,
one MAC with proper switches can implement
many digital filters. It is important to note this kind
of structural obfuscation can be applied beyond
the architecture level. For example, at the HDL
level or the gate-level net list, high-level
transformations can also lead to an obfuscated
version of a DSP circuit. Therefore, circuits with
different functionalities could have a similar
structure by employing high-level
transformations. Comparing the folded structures
(a) and (b) in Figure 1, it can be observed that the
two structures are exactly the same, except the
switch instances. However, their functionalities
are different, i.e., the former implements a 1st-
order IIR filter, while the latter a 2nd-order IIR filter.
In conclusion, if the switch instances are invisible
to the adversary, the DSP systems will be hard
to reverse engineer. The adversary who only has
knowledge of the structural information but lacks
knowledge of the switch instances cannot easily
discover the functionality of a DSP circuit.

Figure 1: (a) Structural Obfuscation
(b) Functional Obfuscation



237

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

DESIGN FLOW OF THE
EXISTING DSP CIRCUIT
OBFUSCATION APPROACH
Design Methodology
In this section, we propose a novel DSP hardware
protection methodology through obfuscation by
hiding functionality via high-level transformations.
This approach helps the designer to protect the
DSP design against piracy by controlling the circuit
configuration among the generated variation
modes of the original design. The detailed design
flow is described below:

configure data could be mapped into the same
mode, which only involves simple combinational
logic synthesis.

Step 5: Two-level FSM generation. The
reconfigurator and the obfuscating FSM are
incorporated into the DSP design as shown in
Figure 2. The configuration key is generated at
this step.

Step 6: Design specification. This step includes
the HDL and netlist generation and synthesis of
the DSP system.

The proposed design methodology does not
require signif-icant changes to established
verification and testing flows. In fact, the
obfuscated DSP circuit with the correct key
behaves just like the original circuit.

Architecture of the Obfuscated DSP
Circuit
The complete system of the proposed obfuscated
DSP circuit is illustrated in Figure 3. The DSP
circuits are obfuscated by introducing a FSM
whose state is controlled by a key. The FSM
enables a reconfigurator that configures the
functionality mode of the DSP circuit. High-level
transformations lead to many equivalent circuits

Figure 2: Proposed Secure Switch Design

Step 1: DSP algorithm. This step generates the
DSP algorithm based on the DSP application.

Step 2: High-level transformation selection.
Based on the specific application, appropriate
high-level transformation should be chosen
according to the performance requirement (e.g.,
area, speed, power or energy).

Step 3: Obfuscation via high-level transformation.
Selected high-level transformations are applied
simultaneously with obfuscation where variation
modes, and different configurations of the switch
instances are designed.

Step 4: Secure switch design. The secure
switch is designed based on the variations of
high-level transformations. Note that different

Figure 3: Advanced Encryption Standard
(AES)



238

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

and all these create ambiguity in the structural
level. High-level transformations also allow design
of circuits using same data path but different
control circuits. For example, a data path may
implement a 3rd-order or a 6th-order digital filter,
or in general a (3l) order filter, where l is a positive
integer. These correspond to different modes.
While these modes generate outputs that are
functionally incorrect, these may represent correct
outputs under different situations, since the output
is meaningful from a signal processing point of
view. Finally, other modes lead to non-meaningful
outputs. The initialization key and the configure
data must be known for the circuit to work
properly. Consequently, the circuit behaves as an
obfuscated circuit.

The selective application of technological and
related procedural safeguards is an important
responsibility of every Federal organization in
providing adequate security to its electronic data
systems. This publication specif ies a
cryptographic algorithm, the Advanced Encryption
Standard (AES) which may be used by Federal
organizations to protect sensitive data. Protection
of data during transmission or while in storage
may be necessary to maintain the confidentiality
and integrity of the information represented by the
data.

The algorithms uniquely define the
mathematical steps required to transform data
into a cryptographic cipher and also to transform
the cipher back to the original form. The Advanced
Encryption Standard is being made available for
use by Federal agencies within the context of a
total security program consisting of physical
security procedures, good information
management practices, and computer system/
network access controls.

 Data encryption (cryptography) is utilized in
various applications and environments. The
specific utilization of encryption and the
implementation of the AES will be based on many
factors particular to the computer system and its
associated components. In general, cryptography
is used to protect data while it is being
communicated between two points or while it is
stored in a medium vulnerable to physical theft.
Communication security provides protection to
data by enciphering it at the transmitting point and
deciphering it at the receiving point. File security
provides protection to data by enciphering it when
it is recorded on a storage medium and
deciphering it when it is read back from the
storage medium. In this the key must be available
at the transmitter and receiver simultaneously
during communication.

Cryptography is probably the most important
aspect of communication security becoming
increasingly important as a basic building block
for computer security. Cryptographic systems are
characterized along three independent
dimensions:

The Type of Operations Used for
Transforming Plaintext to Ciphertext: All
encryption algorithms are based on two general
principles: substitution, in which each element in
the plaintext is mapped into another element, and
transposition, in which element in the plaintext
are rearranged. The fundamental requirement is
that no information be lost. Most systems referred
to as product systems, involve multiple stages
substitutions and transpositions.

The Number of Keys Used: If both sender and
receiver use the same key, the system is referred
to as symmetric, single-key, secret-key, or
conventional encryption. If the sender and



239

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

lengths of 128,192 and 256-bits. The input and
output for the AES algorithm each consist of
sequence of 128-b (digit with values of 0 or 1).
Nk = 8. The only key-block-round combination
that confirms to the standard is given in Figure 5
[2]. Here we consider Nr = 10 and Nk = 4 for
design of the architecture.

The Figure 3 shows the complete structure of
AES algorithm (both encryption and decryption
process) (Batra, 2005). In FIPS 197 standard, the
block is depicted as square matrix of bytes. The
block is copied into state array, which is modified
at each stage of encryption or decryption
processes. Similarly, the 128-b key is depicted
as a square matrix of bytes.

The key is then expanded into an array of key
schedule words, each word is of 4-bytes and the
total key scheduled is 44 words for the 128-b key
input.

receiver use different keys, the system is referred
to as asymmetric, two-key, or public-key
encryption.

The Way in Which the Plaintext is Processed:
A block cipher processes the input one block of
elements at a time, producing an output block for
each input block. A stream cipher processes the
input elements continuously, producing output one
element at a time, as it goes along. Before
beginning, we define some terms. A symmetric
encryption scheme has five ingredients:

Plaintext: This is the original intelligible message
or data that is fed into the algorithm as input.

Encryption Algorithm: The encryption algorithm
performs various substitutions and
transformations on the plaintext.

Secret key: The secret key is also input to the
encryption algorithm. The key is a value
independent of the plaintext and of the algorithm.
The algorithm will produce a different output
depending on the specific key being used at the
time. The exact substitutions and transformations
performed by the algorithm depend on the key.

Ciphertext: This is the scrambled message
produced as output. It depends on the plaintext
and the secret key. For a given message, two
different keys will produce two different ciphertext.
The ciphertext is an apparently random stream
of data and, as it stands, is unintelligible.

Decryption Algorithm: This is essential the
encryption algorithm run in reverse. It takes the
ciphertext and the secret key and produces the
original plaintext.

Advanced Encryption Algorithm (AES)
The Advanced Encryption Algorithm (AES), a
symmetric block cipher algorithm that can
processes blocks of 128-b, using cipher keys with

These sequences will sometimes refer to as
blocks and the number of bits they contain will be
referred to as their length. Internally, the AES
algorithm’s operation is are performed on a two-
dimensional array of bytes called the state as
shown in the Figure 4. The state consists of four
rows of bytes, each containing Nb bytes, where

Figure 4: State Array



240

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

Figure 5: Block Diagram of AES

Nb is the block length. Here Nb = 4, which reflects
the number of 32-b words (number of columns)
in the state (Kirovski et al., 1998).

For AES algorithm, the length of the cipher key,
K, is 128,192 or 256 bits. The key length is
represented by Nk = 4, 6, or 8, which reflects the
number of 32-b words (number of columns) in
the cipher key. The number of rounds to be
performed during the execution of the algorithm

is dependent on the key size. The number of
rounds is represented by Nr, where Nr = 10 when
Nk = 4, Nr = 12 when Nk = 6 and Nr = 14 when

The Cipher and Decipher process is explained
in the pseudo code in Figure 4 and Figure 5

Figure 6: Key-Block-Round Combination

Table 1: AES Version Description Table



241

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

(Kirovski et al., 1998). The individual
transformation – Byte substitution, Shift row, Mix
column and Add round key- processes the state
and is described in the following subsection. As
shown in the Figure 4, all Nr rounds are identical
with the exception of the final round, which does
not include Mix column transformation and as
such same in the decipher process shown in the
Figure 5. Let us now see the detailed description
of each of the four stages used in AES. For each
stage both encryption and decryption
transformation will be explained. This is followed
by a discussion of key expansion process used
in AES.

Byte Substitution
The substitute byte transformation, called the byte
sub, is a simple table lookup. The process is
shown in the Figure 6. AES defines a 16X16
matrix of byte values, called an S-Box that
contains a permutation of all possible 256 8-b
values which is shown in the Table 1. Each
individual byte of the state is mapped into a new
byte in the following way: The leftmost 4-b of the
byte value is used as a row value and the
rightmost 4-b are used as a column value. These
row and column values serve as indexes into the
S-Box to select a unique 8-b output value. For
example, the hexadecimal value {95} references
row 9, column 5 of the S-Box, which contains the
value {ad}. Accordingly, the value {95} is mapped
into the value {ad}.

The process of byte substitution is same for
the decryption process but it makes use of
inverse S-Box as shown in the Table 2, which is
applied to each byte of the state (Kirovski et al.,
1998).

In this step, a normal left circular shift
operation is done where in the first row is not

Figure 7: AES S-Box

Figure 8: AES Shift Row

altered and the next three rows are moved by 1,
2, 3 bytes respectively (Roy et al., 2008).
Conceptually, this is shown in the Figure.

Whereas in decryption transformation, the
rows are subjected to right circular shift wherein
the first row is untouched and row 2, 3 and 4 are
shifted by 1, 2 and 3 bytes respectively. This
process is shown in the Figure

a(x) = {03}x3 + {01}x2 + {01}x + {02}

Let s‘(x) = a(x) x s(x):



242

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

Mix Column

The mix column transformation operates on
the state column-by-column, treating each
column as a four term polynomial. The column
are considered as polynomial.

Key Expansion

The AES key expansion algorithm takes as input
a 4-word (16-byte) key and produces a linear array
of 44 words (176 bytes). This is sufficient to
provide a 4-word round key for the initial
AddRoundKey stage and each of the 10 rounds
of the cipher. The following pseudocode describes
the expansion (Batra, 2005) KeyExpansion (byte
key[16], word w[44])

{

word temp

for (i = 0; i < 4; i++)

w[i]=(key[4*i],key[4*i+1],key[4*i+2],key[4*i+3]);

for (i = 4; i < 44; i++)

{

temp = w[i-1];

if (i mod 4 = 0)temp = SubWord
(RotWord (temp)) XOR Rcon[i/4];

w[i] = w[i-4] XOR temp

}

}

The key is copied into the first four words of
the expanded key. The remainder of the expanded
key is filled in four words at a time. Each added
word w[i] depend on the immediately preceding
word, w[i-1], and the word four positions back,
w[i-4]. In three out of four cases, a simple XOR is
used. For a word whose position in the w array is
a multiple of 4, a more complex function is used.
Figure.11 illustrates the generation of the first eight
words of the expanded key, using the symbol g
to represent that complex function. The function
g consists of the following subfunctions:

Figure 9: Key Expansion

1. RotWord performs a one-byte circular left shift
on a word. This means that an input word [b0,
b1, b2, b3] is transformed into [b1, b2, b3, b0].

2. SubWord performs a byte substitution on each
byte of its input word, using the S-box.

3. The result of steps 1 and 2 is XORed with a
round constant, Rcon[j] which is given in the
Table 3 over GF (28) and multiplied with modulo
x4+1 with a fixed polynomial a(x),



243

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

Figure 10: Round Constant Rcon [j]

RESULTS
RTL Schematic
The RTL SCHEMATIC gives the information about
the user view of the design. The internal blocks

Figure 12: Internal Schematic

Figure 11: Simulation Result and RTL
Schematic

Figure 13: Simulation Result

contains the basic gate representation of the logic.
These basic gate realization is purely depend
upon the corresponding FPGA selection and the
internal database information.

Waveform
In the waveform which is shown above, A and B
signals represents the inputs which we are
applying to the design. Similarly A x B is the output
signal for the design. The constant WIDTH signal
here is 32. To obtain the required outputs force
the inputs logic with the required values. All the
signals which are shown in the above waveform
are in DECIMAL mode. Here in the waveform the
multiplication operation is performed between the
inputs A and B and the corresponding result is
stored in the signal A x B.



244

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 I N Bindhu Madhavi and S A J Mani Kumar G, 2015

CONCLUSION
In this project, we have given 128 bits input and
128 bits security key and observed how it is
delivered at the output with security. In this project
there is no revealing of the original message to
the hackers. The original message can be
revealed to only sender and the receiver. So, in
future, any propriety information can be
transmitted securely by using this project (military
or banking purposes). Wide variety of
applications, such as secure internet (ssl),
electronic financial transactions, remote access
servers, cable modems, secure video
surveillance and encrypted data storage. The
future scope of our project is to extend 128 bits
inputs to n bits (n is any integer value). The
functionality is verified by using XILINX ISE and
the RTL is developed based on the VERILOG HDL
language. In this project security oriented
structural architecture along with maintaining
functionality is carried out in terms of area, power
and delay by maintaining the tradeoff.

REFERENCES
1. Alkabani Y M and Koushanfar F (2007),

“Active Hardware Metering for Intellectual
Property Protection and Security”, in
Proceedings of the USENIX Security
Symposium, pp. 1-16.

2. Batra T (2005), “Methodology for Protection

and Licensing of HDL IP”, http://www.design-
reuse.com/articles/12745.

3. Chakraborty R S and Bhunia S (2008),
“Hardware Protection and Authentication
Through Netlist Level Obfuscation”, in
Proceedings of International Conference
on Computer Aided Design ICCAD ,
pp. 674-677.

4. Kirovski D, Hwang Y-Y, Potkonjak M and
Cong J (1998), “Intellectual Property
Protection by Watermarking Combinational
Logic Synthesis Solutions”, in Proceedings
of International Conference on Computer
Aided Design (ICCAD), pp. 194-198.

5. Koushanfar F and Alkabani Y (2010),
“Provably Secure Obfuscation of Diverse
Watermarks for Sequential Circuits”, in
Proceedings of International Symposium on
Hardware-Oriented Security and Trust
(HOST), pp. 42-47.

6. Roy J A, Koushanfar F and Markov I (2008),
“EPIC: Ending Piracy of Integrated Circuits”,
in Proceedings of Design, Automation and
Test in Europe (DATE).

7. Suh G E and Devadas S (2007), “Physical
Unclonable Functions for Device
Authentication and Secret Key Generation”,
in Proceedings of the 44th Annual Design
Automation Conference, pp. 9-14.






