


61

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

LOSSLESS TEXT DATA COMPRESSION USING
MODIFIED HUFFMAN CODING – A REVIEW

Harsimran Kaur1* and Balkrishan Jindal1

Data Compression is a method to increase the storage capacity by eliminating redundancies that
occur in most text files. It converts a string of characters into a new string which have the same
data in small length. There are two types of data compression, lossless data compression and
lossy data compression. Lossless data compression includes texts and lossy data compression
includes image, audio and video etc. There are various techniques used for data compression
like Bit Reduction, Arithmetic Coding, Run Length Encoding and Huffman Coding etc.

Keywords: Text data compression, Lossless data compression

*Corresponding Author: Harsimran Kaur  kharsimran02@gmail.com

1 Yadavindra College of Engineering, Talwandi Sabo, Bathinda, Punjab, India.

Int. J. Engg. Res. & Sci. & Tech. 2015

ISSN 2319-5991 www.ijerst.com
Vol. 4, No. 4, November 2015

© 2015 IJERST. All Rights Reserved

Review Article

INTRODUCTION
Data Compression is the process of encoding data

to fewer bits than the original representation, so

that it takes less storage space and less

transmission time while communicating over a

network (Brar and Singh, 2013). Data

Compression is possible because most of the real

world data is very redundant. It is basically defined

as a technique that reduces the size of data by

applying different methods that can either be lossy

or lossless (Kaur and Goyal, 2013). A

compression program is used to convert data from

an easy-to-use format to one optimized for

compactness. Likewise, an uncompressing

program returns the information to its original form.

TYPES OF DATA COMPRESSION
Currently, two basic classes of data compression

are applied in different areas. One of these is lossy

data compression, which is widely used to

compress image data files for communication or

archives purposes. The other is lossless data

compression that is commonly used to transmit

or archive text or binary files required to keep their

information intact at any time.

LOSSY DATA COMPRESSION
A lossy data compression method is one where

the data retrieves after decompression may not

be exactly same as the original data, but is “close

enough” to be useful for specific purpose. After

one applies lossy data compression to a
message, the message can never be recovered
exactly as it was before it was compressed.
When the compressed message is decoded it
does not give back the original message. Data
has been lost. Because lossy compression



62

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

cannot be decoded to yield the exact original
message, it is not a good method of compression
for critical data, such as textual data. In a sound
file, for example, the very high and low
frequencies, which the human ear cannot hear,

may be truncated from the file. Figure 1 shows

the compression and decompression process

over the network. Figure 2 shows the

compression methods, lossless data

compression and lossy data compression. The

lossless data compression that is commonly

used to transmit or archive text or binary files

required to keep their nformation intact at any time.

Lossy data compression, which is widely used

to compress image data files for communication

or archives purposes.

Lossless data compression is further divided

into Run-Length, Huffman coding and Arithmetic

coding. Lossy data compression is divided into

Joint Photographic Experts Group (JPEG),

Moving Picture Experts Group (MPEG) and MPEG

Audio Layer 3 (MP3).

Most of the lossy data compression techniques

suffer from generation loss which means

decreasing the quality of text because of

repeatedly compressing and decompressing the

file. Lossy image compression can be used in

Figure 1: Diagrammatic Representation of Compression [3]

Figure 2: Data Compression Methods [3]



63

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

digital cameras to increase storage capacities

with minimal degradation of picture quality.

LOSSLESS DATA
COMPRESSION
Lossless data compression is a technique that

allows the use of data compression algorithms

to compress the text data and also allows the

exact original data to be reconstructed from the

compressed data. This is in contrary to the lossy

data compression in which the exact original data

cannot be reconstructed from the compressed

data. The popular ZIP file format that is being used

for the compression of data files is also an

application of lossless data compression

approach. It is used when it is important that the

original data and the decompressed data be

identical. In English text, the letter ‘a’ is much more

common than the letter ‘z’, and the probability that

the letter ‘t’ will be followed by the letter ‘z’ is very

small. So, this type of redundancy can be removed

using lossless compression.

The advantage of lossless methods over lossy

methods is that Lossless compression results

are in a closer representation of the original input

data. The performance of algorithms can be

compared using the parameters such as

Compression Ratio and Saving Percentage. In a

lossless data compression file the original

message can be exactly decoded. Lossless data

compression works by finding repeated patterns

in a message and encoding those patterns in an

efficient manner. For this reason, lossless data

compression is also referred to as redundancy

reduction. Because redundancy reduction is

dependent on patterns in the message, it does

not work well on random messages. Lossless

data compression is ideal for text.

LITERATURE REVIEW
Brar and Singh (2013) described that they provide

a survey of different basic lossless and lossy data

compression techniques. On the basis of these

techniques, a bit reduction algorithm for

compression of text data had been proposed by

the authors based on number theory system and

file differential technique which was a simple

compression and decompression technique free

from time complexity. The compression algorithm

took O(n) time, where n was the total number of

characters in the file and the total computation

time required for the algorithm was proportional

to O(n log n).

Kaur and Goyal (2013) described that they

reduced the number of bits required to represent

a character by using 6-bit binary coding instead

of a 8-bit binary coding technique. They used a

numbering map for converting the input data for

introduce a way to use the binary form in a

dynamic way, which had never used for coding

data before, and they further used 6-Digits binary

representation of alphabet with lowercase and

uppercase with some extra symbols that were

most commonly used in the text files. They found

a new way to decrease the length of the bits

string.

Kaur and Goyal (2013) described that the

compression was useful because it help us to

reduce the resources usage, such as data

storage space or transmission capacity. They

discussed only the lossless compression

techniques, such as Huffman coding, Run Length

Encoding and Arithmetic coding are considered.

Lempel Ziv scheme was also considered which

was a dictionary based technique. A conclusion

was derived on the basis of these methods.



64

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

Katugampola (2012) described that how

ternary representation of numbers can be utilized

to compress text data with fixed-symbol length

coding techniques. They used a binary map for

ternary digits and introduced a method to use the

binary 11-pair, which had never been used for

coding data before, and they further used 4-Digits

ternary representation of alphabet with lowercase

and uppercase letters. They found a way to

minimize the length of the bits string, which was

only possible in ternary representation.

Islam and Rajon (2011) introduced that the text

compression was an elementary concern for data

engineering and management. The rapid use of

battery powered small memory smart devices

especially mobile phones and wireless sensors

for communication and monitoring have turned

short text compression into a more important and

prevailing research arena than large scale text

compression. The obtained compression ratio

indicated a better performance in terms of

resource consumption including better

compression ratio, lower compression and

decompression time with reduced memory

requirements and lower complexity.

Kaur and Verma (2012) described that the LZW

was dictionary based algorithm, which was

lossless in nature. The code for each character

was available in the dictionary which utilized less

number of bits (5 bits) than its ASCII code. LZW

data compression algorithm was implemented

by finite state machine, thus the text data could

be effectively compressed.

Shanmugasundaram and Lourdusamy (2011)

introduced that there were a lot of data

compression algorithms which were available to

compress files of different formats. They provide

a survey of different basic lossless data

compression algorithms. Experimental results

and comparisons of the lossless compression

algorithms using Statistical compression

techniques and Dictionary based compression

techniques were performed on text data. Lossy

algorithms achieved better compression

effectiveness than lossless algorithms, but lossy

compression was limited to audio, images, and

video, where some loss was acceptable.

Hasan (2011) described that the data

compression was of interest in business data

processing, both because of the cost savings it

offered and because of the large volume of data

manipulated in many business applications. More

the size of the data be smaller, it provided better

transmission speed and saved time.

Mohd Kamir et al. (2009) described that the

efficiency and capability LZW++ in data

compression. The LZW++ technique was

enhancement from existing LZW technique. LZW

read one by one character at one time. Differ with

LZW++ technique, where the LZW++ read three

characters at one time. Several experiments had

been done by different types of data format. The

results showed LZW++ technique was better as

compared to existing LZW technique in term of

file size. The results showed LZW++ technique

was efficient for data compression.

EXISTING LOSSLESS DATA
COMPRESSION TECHNIQUES
The existing data compression techniques are

described as follow:

BIT REDUCTION ALGORITHM
The main idea behind this program is to reduce

the standard 7-bit encoding to some application



65

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

specific 5-bit encoding system and then pack into

a byte array. This method reduces the size of a

string when the string is lengthy and the

compression ratio is not affected by the content

of the string (Brara and Singh, 2013). Bit

Reduction Algorithm in steps:

1. Select the frequently occurring characters

from the text file which are to be encoded and

obtain their corresponding ASCII code.

2. Obtain the corresponding binary code of these

ASCII key codes for each character.

3. Then put these binary numbers into an array

of byte (8 bit array).

4. Remove extra bits from binary no like extra 3

bits from the front.

5. Then rearrange these into array of byte and

maintain the array.

6. Final text will be encoded and as well as

compression will be achieved.

7. Now decompression will be achieved in

reverse order at the client-side.

Huffman Coding

Huffman coding deals with data compression of

ASCII characters. It follows top down approach

means the binary tree is built from the top down

to generate an optimal result. In Huffman Coding

the characters in a data file are converted to binary

code and the most common characters in the

file have the shortest binary codes, and the

characters which are least common have the

longest binary code (Kaur and Goyal, 2013). A

Huffman code can be determined by

successively constructing a binary tree, whereby

the leaves represent the characters that are to

be encoded. Every node contains the relative

probability of occurrence of the characters

belonging to the sub tree beneath the node. The

edges are labeled with the bits 0 and 1. The

algorithm to generate Huffman code is:

1. Start with a list of free nodes, where each node

corresponds to a symbol in the alphabet.

2. Select two free nodes with the lowest weight

from the list.

3. Create a parent node for these two nodes

selected and the weight is equal to the weight

of the sum of two child nodes.

4. Remove the two child nodes from the list and

the parent node is added to the list of free

nodes.

5. Repeat the process starting from step-2 until

only a single tree remains.

After building the Huffman tree, the algorithm

creates a prefix code for each symbol from these

alphabets simply by traversing the binary tree

from the root to the node, which corresponds to

the symbol. It assigns 0 for a left branch and 1 for

a right branch.

Run Length Encoding

Data often contains sequences of identical bytes.

By replacing these repeated byte sequences with

the number of occurrences, a substantial

reduction of data can be achieved. This is known

as Run-length Encoding. Run-Length Encoding

is a simple data compression algorithm which is

supported by bitmap file formats such as BMP.

RLE basically compresses the data by reducing

the physical size of a repeating string of

characters. This repeating string is called a run

(Kaur and Goyal, 2013) which is typically encoded

into two bytes where the first byte represents the

total number of characters in the run and is called

the run count and it replaces runs of two or more

of the same character with a number which

represents the length of the run which will be



66

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

followed by the original character and single

characters are coded as runs of 1. Run-length

coding is a generalization of zero suppression,

which assumes that just one symbol appears

particularly often in sequences. The blank (space)

character in text is such a symbol; single blanks

or pairs of blanks are ignored. Starting with

sequences of three bytes, they are replaced by

an M-byte and a byte specifying the number of

blanks in the sequence. RLE is useful where

redundancy of data is high or it can also be used

in combination with other compression

techniques also.

Here is an example of RLE:

Input: YYYBBCCCCDEEEEEERRRRRRRRRR

Output: 3Y2B4C1D6E10R

The drawback of RLE algorithm is that it

cannot achieve the high compression ratios as

compared to another advanced compression

methods, but the advantage of RLE is that it is

easy to implement and quick to execute thus

making it a good alternative for a complex

compression algorithm.

Arithmetic Coding

Arithmetic coding is an optimal entropy coding

technique as it provides best compression ratio

and usually achieves better results than Huffman

Coding. It is quite complicated as compared to

the other coding techniques. When a string is

converted in to arithmetic encoding, the

characters having maximum probability of

occurrence will be stored with fewer bits and the

characters that do not occur so frequently will be

stored with more bits, resulting in fewer bits used

overall. Arithmetic coding converts the stream of

input symbols into a single floating point number

as output (Kaur and Goyal, 2013). Unlike Huffman

coding, arithmetic coding does not code each

symbol separately. Each symbol is instead coded

by considering all prior data. Thus a data stream

encoded in this fashion must always be read from

the beginning. Consequently, random access is

not possible. Here is an algorithm to generate the

arithmetic code:

1. Calculate the number of unique symbols in the

input. This number represents the base b (e.g.

base 2 is binary) of the arithmetic code.

2. Assign values from 0 to b to each unique

symbol in the order they appear.

3. Using the values from previous step, the

symbols are replaced with their codes in the

input.

4. Convert the result from previous step from

base b to a sufficiently long fixed-point binary

number to preserve precision.

5. Record the length of the input string

somewhere in the result as it is needed for

decoding.

PROPOSED METHODOLOGY

Arithmetic Coding Algorithm

Arithmetic coding transforms the input data into

a single rational number between 0 and 1 by

changing the base and assigning a single value

to each unique symbol from 0 up to the base.

Then, it is further transformed into a fixed-point

binary number which is the encoded result. The

value can be decoded into the original output by

changing the base from binary back to the original

base and replacing the values with the symbols

they correspond to. A general algorithm to

compute the arithmetic code is:

1. Calculate the number of unique symbols or

characters in the input. This number



67

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

represents the base b (e.g. base 2 is binary)

of the arithmetic code.

2. Assign values from 0 to b to each unique

symbol in the order they appear.

3. Using the values from step 2, replace the

symbols in the input with their codes.

4. Convert the result from step 3 from base b to

a sufficiently long fixed-point binary number to

preserve precision.

5. Record the length of the input string

somewhere in the result as it is needed for

decoding.

Example

Step 1: Read the input string.

I am studying in Yadavindra College

Total Characters = 35, Base = 8 bits, Length =

35*8=280 bits

Step 2: Calculate the number of unique symbols

or characters in the input.

Unique characters = I amstudyingvrcole = 18

Base = 5 bits

Step 3: Assign values from 0 to 4 to each unique

symbol in the order they appear.

I=00000, space=00001, a=00010, m=00011,

s=00100, t=00101, u=00110,

d=00111, y=01000, i=01001, n=01010, g=01011,

v=01100, r=01101, c=01110,

o=01111, l=10000, e=10001

Step 4: Convert the result from previous step.

00000 00001 00010 00011 00001 00100 00101

00110 00111 01000 01001 01010 01011 00001

01001 01010 00001 01000 00010 00111 00010

01100 01001 01010 00111 01101 00010 00001

01110 01111 10000 10000 10001 01011 10001

Step 5: Record the length of the input string.

Length=35*5=s175 bits

So in this way, we save 105 bits.

Huffman Coding

Huffman coding deals with data compression of

ASCII characters. It follows top down approach

means the binary tree is built from the top down

to generate an optimal result. In Huffman Coding

the characters in a data file are converted to binary

code and the most common characters in the

file have the shortest binary codes, and the

characters which are least common have the

longest binary code (Kaur and Goyal, 2013). A

Huffman code can be determined by

successively constructing a binary tree, whereby

the leaves represent the characters that are to

be encoded. Every node contains the relative

probability of occurrence of the characters

belonging to the sub tree beneath the node. The

edges are labeled with the bits 0 and 1. The

algorithm to generate Huffman code is:

(1)Start with a list of free nodes, where each node

corresponds to a symbol in the alphabet.

(2)Select two free nodes with the lowest weight

from the list.

(3) Create a parent node for these two nodes

selected and the weight is equal to the weight

of the sum of two child nodes.

(4) Remove the two child nodes from the list and

the parent node is added to the list of free nodes.

(5) Repeat the process starting from step-2 until

only a single tree remains.

Frequencies Characters in the File



68

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

After building the Huffman tree, the algorithm

creates a prefix code for each symbol from these

alphabets simply by traversing the binary tree

from the root to the node, which corresponds to

the symbol. It assigns 0 for a left branch and 1 for

a right branch.

Step 3: Now labeling the edges from each parent

to its left child with the digit 0 and the edge to right

child with 1. Now final binary tree will be as follows:

Example

Step 1: In first step of building a Huffman Code

order the characters from highest to lowest

frequencies of occurrence as follows:

Step 2: Take two least-frequent characters and

logically grouped them together, and then their

frequencies are added. The D and E characters

have grouped together and we have combined

frequency are 25.

RESULT
We have tested our algorithm of different texts or

strings and accuracy of the algorithm is

approximately 93%.

CONCLUSION AND FUTURE
WORK
In this paper we have presented the review on

various data compression techniques along with
their algorithms. It is concluded that a new
approach is needed to be developed that can
increase the data compression ratio in minimum

amount of time.

REFERENCES
1. Brar Rupinder Singh and Singh Bikramjeet.

(2013), “ A Survey on Different Compression



69

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 Harsimran Kaur and Balkrishan Jindal, 2015

Techniques and Bit Reduction Algorithm for

Compression of Text/Lossless Data”, In:

International Journal of Advanced Research

in Computer Science and Software

Engineering, Vol. 3, No. 3, pp. 579-582.

2. Franceschini Robert and Mukherjee Amar

(1996), “Data Compression Using

Encrypted Text”, In: IEEE, pp. 130-138.

3. Hasan Md. Rubaiyat (2011), “Data

Compression using Huffman based LZW

Encoding Technique”, In: International

Journal of Scientific & Engineering

Research, Vol. 2, No. 11, pp. 1-7.

4. https://www.wikipedia.com

5. Islam Md. Rafiqul and Rajon S A Ahsan

(2011), “An Enhanced Scheme for Lossless

Compression of Short Text for Resource

Constrained Devices”, In: Proceedings of

14th International Conference on Computer

and Information Technology (ICCIT 2011) 22-

24 December, 2011, Dhaka, Bangladesh,

IEEE.

6. Kaur Rajinder and Goyal Er. Monica (2013),

“An Algorithm for Lossless Text Data

Compression”, In: International Journal of

Engineering Research & Technology, Vol.

2, No. 7, pp. 474-477.

7. Kaur Rajinder and Goyal Monica (2013), “A

Survey on the Different Text Data

Compression Techniques”, In: International

Journal of Advanced Research in Computer

Engineering & Technology, Vol. 2, No. 2, pp.

711-714.

8. Katugampola Udita N (2012), “A New

Technique for Text Data Compression”, In:

International Symposium on Computer,

Consumer and Control, IEEE, pp. 405-409.

9. Kaur Simrandeep and Verma V Sulochana

(2012), “Design and Implementation of LZW

Data Compression Algorithm”, In:

International Journal of Information

Sciences and Techniques (IJIST), Vol. 2,

No. 4, pp.71-81.

10. Mohd Kamir Yusof, Mohd Sufian Mat and

Ahmad Faisal Amri Abidin (2009), “Study of

Efficiency and Capability LZW++ Technique

in Data Compression”, In: World Academy

of Science, Engineering and Technology,

Vol. 59, pp. 380-383.

11. Porwal Shrusti, Chaudhary Yashi, Joshi

Jitendra and Jain Manish (2013), “Data

Compression Methodologies for Lossless

Data and Comparison between Algorithms”,

In: International Journal of Engineering

Science and Innovative Technology

(IJESIT), Vol. 2, No. 2, pp. 142-147.

12. Shanmugasundaram Senthil and

Lourdusamy Robert (2011), “A Comparative

Study of Text Compression Algorithms”, In:

International Journal of Wisdom Based

Computing, Vol. 1, No. 3, pp. 68-76.

13. Singh Udepal and Garg Upasna (2013), “An

ASCII Value Based Text Data Encryption

System”, In: International Journal of

Scientific and Research Publications, Vol.

3, No. 11, pp. 1-5.






