


202

This article can be downloaded from http://www.ijerst.com/currentissue.php

Int. J. Engg. Res. & Sci. & Tech. 2015 M Rama Mohan Rao and M R S Satyanarayana, 2015

NUMERICAL MODELING AND ANALYSIS OF

ELASTOMER ENCAPSULATED SYSTEM
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The aim of this paper is to study the static, vibration, harmonic and shock analysis of Elastomer
Encapsulated system. It investigates the performance of elastomer encapsulated system which
consists of three different materials Aluminum, ceramic, and elastomer. For nonlinear material
system, the curve fit of the experimental investigation with the analytical methods of the standard
material models like Ogden, Mooney, Arruda-Boyce, Neo-Hookean, etc., was obtained. It shows
that a good fit between the predictions from the analytical models and experimental results. The
static analysis is performed for various pressures on the assembly and corresponding peak
stress and displacements were observed. The harmonic response of the model of a given
frequency range is studied for a given harmonic displacement.
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INTRODUCTION

The ever increasing demands for rubbers and

rubber-like materials have attracted the attention

of researchers for modeling these materials’

behavior under mechanical and geometrical

boundary conditions. To characterize the

mechanical behavior of these materials, it is a

common practice to represent the constitutive

equation through a strain energy density function.

Hyperelastic materials are often considered

for various industrial applications, due to their

remarkable properties of flexibility, deformability

and resistance to high deformation levels.

Mooney (1940) and Rivlin (1948). Valanis and

Landel (1967) proposed to write the strain energy

function into a separable form related to the

principal directions. This advance led to the

Ogden model (Ogden, 1972, 1982) which is

largely used today. The difficulties related to the

incompressibility modeling have been treated by

Oden (1972, 1982) in the framework of the finite

element method.

Many attempts have been made to develop

more general hyperelastic models to include

different aspects of materials behavior. Rivlin and

Saunders (1951) proposed that a strain energy

density function is expressible in the form of even

powered series of the principal stretches. A
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variety of strain energy density functions have

been extracted from Rivlin’s model. Valanis and

Landel (1967) proposed that a strain energy

density is sum of independent functions of the

principal stretches for incompressible materials.

Ogden (1979) proposed that the strain energy

function is a series of principal stretches with real

positive and negative powers. Kakavas (2000)

expressed the strain energy density function in

terms of the second and third invariants of the

logarithmic strain tensor with three material

parameters. Attard (2003) presented the strain

energy density is a geometric series of principal

stretches containing only even powers. In addition,

other constitutive models have been proposed to

reflect the nonlinearity in the load-stretch

relationships.

The material models formulated in invariants

of the strain tensor are based on a series

approach in different powers of the first and

second basic invariant. Because of the

incompressibility of the material, the third basic

invariant is constant and, hence, does not

contribute to the stored energy. Formulations of

the strain energy function based on eigenvalues

were presented by Ogden. These models show

a good adaptability to the experimental data

resulting from the high degree of non-linearity. The

examples of these strain energy density functions

have been presented in the references

(Beatty,1987, Ehlers and Eipper, 1998, Yeoh,

1990, Yeoh, 1993, Darijani, 1999, El-Lawindy and

El-Guiziri, 2000, Boyce and Arruda, 2000, Bradley

et al., 2001, Bischoff et al., 2000.

To obtain the optimal efficiency in the series

computations, the nonlinear equations of the

problem must be set into an appropriate quadratic

form. This can be obtained in general by

introducing additional variables and/or differential

relations between the variables. In the context of

hyperelastic models, strongly nonlinear terms are

involved, such as logarithmic or fractional

functions.

In the present work, the performance of

elastomer encapsulated system which consists

of three different materials Aluminum, ceramic,

and elastomer by static, vibration and harmonic

analysis in which two materials are linear and

elastomer is nonlinear. The nonlinear material has

been modeled by using uniaxial tension/

compression test and the material constants are

determined through least-squares-fit procedures

using numerical methods and is observed that

mooney model is best fitted with less error and

those constant are used for analysis under

various loading conditions and corresponding

results were observed.

CONSTITUTIVE MODEL

The Mooney Rivilin model is a special case of

the generalized Rivlin Model. The Mooney Rivilin

model has shown potential for accurately

predicting the non-linear behavior of isotropic

elastomeric materials. Therefore, it has been

widely used in many researches and finite

element codes as a constitutive model to

represent the behavior of hyper-elastic

materials.The strain invariants (I1, I2 and I3) can

be expressed in terms of principal stretch ratio

or extension ratio as:

I
1
=λ

1
2+ λ

2
2+ λ

3
2,

I
2
= λ

1
2λ

2
2 + λ

2
2 λ

3
2 + λ

1
2λ

3
2,

I3= λ1
2 λ2

2 λ3
2 ...(1)

where λ1, λ2, λ3 are principle stretch ratios (1 +

strain).
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The general form of strain energy density

function is given by

W=Σ∞
i=0,j=0,k=0 Cijk (I1-3)i (I2-3)j (I3-3)k ...(2)

By considering that rubber is incompressible,

i.e., I3=1, the above equation reduces to

W= Σ∞
i=0,j=0 Cij (I1-3)i (I2-3)j ...(3)

W= Σ∞
i=0,j=0 C10 (I1-3)+C01(I2-3) ...(4)

This model has two independent parameters.

A suitable adjustment of these two parameters

was found to be sufficient to capture the stress-

strain curve of rubber almost till its peak load.

The two parameters of the Mooney-Rivlin model

(C10 and C01) are evaluated by fitting the

parameters to experimental data from uniaxial

tensile test.

EXPERIMENTAL DETAILS

The standard material models have a set of

mathematical forms with different parameters that

are established by using algorithm based curve

fitting of experimental data. The strain energy

density parameters have been fitted on

experimental data from tensile, compression,

pure shear. Then, hyperelastic models

coefficients were obtained to provide a good fit

between the predictions from the model and

stress-strain data. The material parameters can

be assessed in terms of their ability to match the

stress-strain data over a large range of

deformations. The fitting results should always

be checked in curve fitting approach with the

recommended strategies such as using a

different model and providing more data points.

The Experiment was carried out by using

Uniaxial Tensile Test Machine shown in Figure 1,

having 500 N capacity, it was able to calculate

the Tensile Strength, Shear strength and Adhesive

Strength. The polyurethane material specimen of

75 mm Gauge Length and Area 13.780 mm2 were

Figure 1: Polyurethane Dumble type Specimen & UTM machine
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considered based on the guidelines given in ASTM

standards. The specimen is fixed at the upper

grip and is initially free at the lower grip. During

the test, the lower grip moves up to the specimen

and clamps it instantaneously at a certain velocity

in the downward direction (axial direction).

In the standard UTM machine setup, the

distance between the lower and upper grips

should be maintained considerably higher than

the selected length of the specimen in order to

achieve accurate results. Therefore, in this study,

mild steel extenders have been connected to the

bottom ends of the specimens. The time history

of displacement and force were obtained from

the UTM Console software. The recorded time

histories of displacement were converted into

strain histories. Similarly, the force time histories

were converted into stress histories. These

of Elastomer encapsulated system. Finite

Element Analysis is carried out with the

appropriate forces and boundary conditions are

given to the Elastomer Encapsulated system and

the static, vibration, harmonic and shock analysis

is performed. The Elastomer encapsulated

Figure 2: Stress vs. Strain Behavior
of Polyurethane

individual time histories were used to obtain the

stress-strain relationships for the specimens. As

a result, Forces vs. Elongation, Stress vs. Strain,

time vs. Load Graphs were obtained, the following

graph shows the Stress vs. Strain Graph as

shown in Figure 2.

Numerical Modeling

The work mainly involves numerical and analysis

Figure 3: Stress vs. Strain Behavior
of Polyurethane

Table 1: Linear Material Properties of the
Elastomer Encapsulated Assembly

Property Aluminum PZT-Ceramic

Density (Kg/m3) 2.71E-9 7.60E-9

Young’s modulus (N/m2) 71E9 66E9

Poisson’s Ratio 0.34 0.34

system line diagram is shown in Figure 3.

Coefficients of Linear and Non-Linear
Material Properties of Elastomer
Encapsulated System

The linear properties of the materials used in the

Elastomer Encapsulated system are tabulated

in the Table 1.

σ = ∂W/∂λ ...(5)

Using incompressibility condition the extension

ratios can be expressed as

λ
1
= λ; λ

2
= λ-1/2; λ

3
= λ-1/2 ...(6)

Using (5) and (6)

σnum=(2λ-2/λ2)[C10+C01/λ] ... (7)

By least square fitting method, residue
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between λ
exp

 and λ
num

 for different values of λ is

given by

R = Σ (σexp - σnum) 2 ...(8)

The non-linear material properties of the

Elastomer is also obtained by the curve fit of the

experimental data with the standard material

models like Ogden, Mooney, Arruda-Boyce, Neo-

Hookean, etc., using numerical method for

evaluation of coefficients and shown in Figure 4.

The evaluated coefficients using numerical

method best fitted with Mooney material model

with less error is given in the following Table.2.

These co-efficients were used as material

properties of polyurethane material.

STATIC ANALYSIS

Static analysis represents the most basic type of

analysis. In this analysis the Elastomer

Encapsulated assembly was subjected to a

uniform pressure on outer elastomer of 1.5, 3.0,

4.5, 6.0 Mpa pressures and corresponding

responses like displacement, von-misses stress

and contact stresses were predicted. Path plots

of von-misses stress and displacements of

middle planes of aluminum holder, Ceramic rings

and Polyurethane material are given in the Figures

5 to 10.

MODAL ANALYSIS

Modal analysis is the process of determining the

Figure 4: Curve fit for Elastomer Material to Mooney Model

Table 2: Evaluated Co-efficeints for Elastomer Material Model

Neo-Hookean Mooney-Rivlin(2) Mooney-Rivlin(3) Signiorini

C10(Mpa) 3.86814 0.497037 2.06078 2.21232

C01(Mpa) - 4.62338 2.48514 2.27903

C11(Mpa) 0 - - -

C20(Mpa) - - - 0

Error 1.54756 0.730895 0.905639 0.940979
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Figure 5: Path Plots For Aluminum Holder Middle Plane
Distance From Fixed End To Free End Vs Vonmisses Stress

Figure 6: Path Plots For Aluminum Holder Middle Plane Distance
From Fixed End To Free End Vs Displacement

Figure 7: Path Plots For First Ceramic Ring Middle Plane Distance
From Fixed Vs Vonmisses Stress
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Figure 8: Path Plots For First Ceramic Ring
Middle Plane Distance From Fixed Vs Displacement

Figure 9: Path Plots For Polyurethane Middle Plane Distance
From Fixed End To Free End Vs Vonmisses Stress

Figure 10: Path Plots For Polyurethane Middle Plane Distance
From Fixed End To Free End Vs Displacement
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Table 3: Natural Frequencies of the Assembly

Mode shape 1 2 3 4 5 6 7

Frequency (Hz) 259 567.8 692 739 969.8 1199 1324

Figure 11: Harmonic response of the Elastomer Encapsulated system

inherent dynamic characteristics of a system in

forms of natural frequencies, damping factors and

mode shapes, and using them to formulate a

mathematical model for its dynamic behavior. The

natural modes of vibration are inherent to a

dynamic system and are determined completely

by its physical properties (mass, stiffness,

damping) and their spatial distributions. Each

mode is described in terms of its modal

parameters: natural frequency, the modal

damping factor and characteristic displacement

pattern, namely mode shape. Each corresponds

to a natural frequency. The degree of participation

of each natural mode in the overall vibration is

determined both by properties of the excitation

source(s) and by the mode shapes of the system.

The natural frequencies of the Elastomer

Encapsulated system are shown in the following

Table 3.

FREQUENCY RESPONSE

ANALYSIS

Frequency response is the quantitative measure

of the output spectrum of a system or device in

response to a stimulus, and is used to

characterise the dynamics of the system. It is a

measure of magnitude and phase of the output

as a function of frequency, in comparison to the

input. In simplest terms, if a sine wave is injected

into a system at a given frequency, a linear/

nonlinear system will respond at that same

frequency with a certain magnitude and a certain

phase angle relative to the input. In many practical

applications, components are dynamically

excited. Based on operating frequency range (10

Hz to 1500 Hz) of Elastomer Encapsulated

system, the harmonic analysis is done by

applying fixed displacement of 1 mm at Aluminum

holder frequencies from 10 Hz to 1500 Hz. This

analysis is to identify the resonant frequencies,
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hence limits of displacement can be given. The

results are plotted as frequency vs. displacement

graphs given in the Figure.11

CONCLUSION

An approach was made to model and discretize
the elastomer encapsulated assembly with FEA
software. The Maximum stresses and
deformation locations are obtained for each part
of the system for 1.5, 3.0, 4.5, 6.0 Mpa pressure
on outer elastomer. The stresses and
deformations of path plots for all parts are
increases with the applied pressure and it is
observed that the stresses are decreases and
deformations are increases from fixed end to free
end in mid plane. Through the detailed finite
element analysis the maximum stresses and
deformations were observed to be on the
ceramic rings and elastomers. The Natural
frequencies of the assembly were predicted. The
harmonic response of the system at the peak
frequencies in the range 10 Hz to 1500 Hz is
plotted.
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NOMENCLATURE

Ι
1
, Ι

1
, Ι

1
Strain invariants

λ1, λ1, λ1 Principal stretch ratios (1+principal strains)

W Strain energy density N-m

C
10

, C
01

, C
11

, C
20

Co-efficient of non linear material models  Mpa

Hz Frequency number of rotations per second

g Acceleration due to gravity (m/sec2)

σ Stress N/mm2

σexp Experimental stress N/mm2

σnum Calculated stress from numerical values N/mm2

R Difference of experimental and numerical stress




