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A data distributor gives the sensitive data to a set of supposedly trusted agents (third parties).
And the distributor found that the some of the data are leaked and found in an unauthorized
place (e.g., on the web or somebody’s laptop). The distributor must identify the leaked data
came from which agents. Here we the propose data allocation strategies (across the agents) to
improve the probability of identifying the leakages. By means of these methods the released
data are not altered (e.g., watermarks). In some cases, we can also insert “realistic but fake”
data records to improve the chances of detecting leakage and identifying the guilty party.
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INTRODUCTION
In the course of any business, the distributor

might give the sensitive data must to the

supposedly trusted third parties. For example, a

hospital may give patient records to researchers

who will devise new treatments. Here the owner

of the data is considered as the distributor and

the supposedly trusted third parties as the agents.

Our objective is to identify the agent who leaked

the data and also to identify when it was leaked.

This application does not support for perturbation.

Perturbation is a technique of modifying the

original data before handovering it to the third

parties. However, in certain cases, the original

data is supposedly not to be modif ied. For

example, in case of banking the details like

customer account number and name should not

be modified. And in case of Hospital, the medical

researchers need the exact patient records for

analyzing. Earlier, the data leakage detection is

done with watermarking, i.e, a unique code is

associated with each distributed copy. And if the

distributor found that the copy is in any

unauthorized place, he may detect that the data

is leaked. Watermarks is a useful technique in

certain cases but  it has the drawback that it may

results in the modification of the original data that

might leads to future issues. And also with another
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drawback is that, watermarks can be easily

removed or destroyed if the data recipient is

malicious. Here we study the following scenario:

After the distributor gives the set of records to

the agents. He may found that the record is leaked

and found in an unauthorized place. The

distributor finds the guilty agent who leaked the

data. And he stop doing business from him

further. Here, we construct a model for identifying

the guilty agents. We also represents certain

algorithms for distributing data or records to the

agents, in such a way to improve our chances of

finding the data leaker. Atlast, we also include the

option of inserting “fake” records to the distributed

set. These records do not corresponds to real

objects but appear to be realistic to the agents.

Here, the fake objects act as a type of watermark

for the entire set of records, without altering any

individual members. If it is found out that an agent

was given one or more fake objects that were

leaked, then the distributor can be more confident

that agent was guilty and he has leaked the record.

We start in Section 2 by introducing our problem

setup and the notation we use. In Sections 4 and

5, we present a model for calculating “guilt”

probabilities in cases of data leakage. Then, in

Sections 6 and 7, we present strategies for data

allocation to agents. Finally, in Section 8, we

evaluate the strategies in different data leakage

scenarios, and check whether they indeed help

us to identify a leaker.

In case of hospital, each patient record is kept

sensitive. Such that the records should not to be

leaked to the third party (target). Therefore we

make use of algorithms like Explicit, Sample

algorithms to minimize the probability of data

getting leaked.

Incase if the distributor found that any of the

patient record is leaked, he may use guilt model

analysis to identify the guilty agents. Previously

we use watermarks technique, i.e., a unique code

is embedded in each record to identify the leaked

data. Due to some drawbacks in this technique

we make use of algorithms.

PROBLEM SETUP AND
NOTATION

Entities and Agents

A distributor has a set of records T = {t1, t2, .., tm}

of valuable data objects. The distributor needs to

share some of these records with a set of agents

U1, U2, ..., Un but he does not wants these

records to be leaked to other third parties called

the target. The objects in T maybe of any type

and size, e.g., they might be tuples in a relation,

or relations in a database. The distributor

distributes any subset of objects Ri belongs to T

to any agents. The agent may request for the

records to the distributor in any of the following

ways:

Sample request Ri = SAMPLE(T,mi): Any

subset of mi records from T can be given to Ui.

Explicit request Ri = EXPLICIT (T, condi): Agent

Ui receives all T objects that satisfy condition.

Guilty Agents

Suppose after the distributor gives the records to

agents, and later he found that any of the records

from set S of T has leaked. That is, some of the

third party, called the target, has been received

any records from the Set S. For example, this

target may publish S on its website by means of

a legal discovery process, the target turned over

S to the distributor.

Since these agents U1, . . . , Un holds certain

records from the distributor, it is reasonable to

suspect these agents may leaked the records to
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the target. However, the suspected agents can

try to convince the distributor that they are

innocent, and that the target obtained the records

by through other ways. For example, the hospital

may distributes the patient records to certain

agents for analyzing. The agent may leaked the

data to the third parties. The target may wantedly

modify any of the details from the patient records

which leads to the severe issue in future.

Our objective of this paper is to discover the

leaked data and the agent or guilt who leaked that

records. If the distributor set has larger data or

records then it is difficult for the agents to assure

that they haven’t leaked any of the records.

Similarly, If the distributor holds only small set of

data then it is difficult to argue that the target may

received any of these records from other means.

Here we not only wanted to find the leaked data,

it is also necessary to find out the guilty agents.

This may help the distributor not to have further

partnership with those guilty agents. Consider, if

the distributor distributes any of the S objects to

agent U1, and the other objects were given to all

agents, the distributor suspect U1 more.

We assume that an agent Ui is guilty and he

leaked one or more records to the target. We

assure the event that agent Ui is guilty by Gi and

the event that agent Ui is guilty for a given leaked

set S by Gi|S. Our next step is to estimate Pr{Gi|S},

i.e., the probability that agent Ui is the leaker with

given evidence S.

RELATED WORK
The technique of detecting the guilty agent is

related to the data provenance problem (Sandip

A Kale and Kulkarni, 2012): the lineage of S

objects indicates necessary  of detecting the

guilty agents. Tutorial (Buneman and Tan, 2007)

gives fine overview on the research applied in this

field. Suggested solutions are domain specific,
such as lineage tracing for datawarehouses (Cui
and Widom, 2003), and assume some prior
knowledge on the way a data view is created out
of data sources. Our problem formulation with
these data and sets is more general and
simplifies lineage tracing, since we do not
consider any data transformation from Ri sets to
S. As far as the data allocation strategies are
concerned, our work is mostly relevant to
watermarking that is used as a means of
establishing original ownership of distributed
objects. Watermarks were initially used in images
(Panagiotis Papadimitriou, 2011), video (Hartung
and Girod, 1998), and audio data (Czerwinski et
al., 2007) whose digital representation includes
considerable redundancy. Recently, (Agrawal and
Kiernan, 2002; Li et al., 2005; Guo et al., 2006;
Shabtai et al., 2010), and other works have also
studied marks insertion to relational data. Our
approach and watermarking are similar in the
sense of providing agents with some kind of
receiver identifying information. However, by its
very nature, a watermark modifies the item being
watermarked. If the object to be watermarked
cannot be modified, then a watermark cannot be
inserted. In such cases, methods that attach
watermarks to the distributed data are not
applicable. Finally, there are also lots of other
works on mechanisms that allow only authorized
users to access sensitive data through access
control policies (Jajodia et al., 2001; Bonatti et
al., 2002). Such approaches prevent in some
sense data leakage by sharing information only
with trusted parties. However, these policies are
restrictive and may make it impossible to satisfy
agents’ requests.

AGENT GUILT MODEL
To calculate this Pr{Gi,S} we need to estimate

for the probability that records in S can be

“guessed” by the target. Consider, that some of

the records in S are the e-mails of the individuals.
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We can conduct an experiment and ask a person

to identify the e-mail of the individuals and if the

person can find 90 e-mails, then the probability

of identifying one e-mail is 0.9. And the other

example is that, if the data set of the distributor

has the customer details like bank account

numbers. And if the person finds the 20 account

numbers, then the probability of identifying the

account numbers is 0.2. We call this estimate

pt, the probability that object t can be guessed by

the target.

Probability pt is similar to the probabilities used

in designing fault-tolerant systems. That is, to

analyze how likely it is that a system will be

operational throughout a given period, we need

the probabilities that individual components will

or will not fail. A component failure in our problem

is the event of identifying the records of S by the

target itself. The component failure computes the

overall system reliability, while the distributor finds

the probability of the data getting leaked. The

component failure probabilities are analyzed

based on experiments, just as we propose to

estimate the pts. Similarly, the component

probabilities are usually conservative estimates,

rather than exact numbers. Consider, if actual

probability is lesser, when comparing with the

component failure probability, and the system is

to be designed with high level of reliability. Then it

is come to know that the actual system

possesses the least level of reliability, but possibly

higher. In the same way, if pts are used which

are larger than the true values, is to be come to

know that the agents is “guilt” with the least

computed probabilities.

We make the following two assumptions

regarding the relationship among the various

leakage events. The first assumption defines  that

an agent’s decision of leaking an object is not

related with other objects. In [14], we study a

scenario where the actions for different objects

are related, and we study how our results are

impacted by the dif ferent independence

assumptions.

Assumption 1: For all t belongs to S such that t !

= t', the provenance of t'. The term “provenance”

in this assumption statement is independent

refers to the source of a value t that founds to be

present in the leaked set. The source may be

any of the agents who have t in their sets or the

target itself (guessing). To simplify these

calculation, the following assumption states that

joint events have a negligible probability. As we

argue in the example below, this assumption

gives us more conservative estimates for the guilt

of agents, which is consistent with our objective.

Assumption 2: An object t belongs to S can only

be obtained by the target in one of the two ways

as follows:

• Any agent  Ui leaked the data from  Ri set.

• The target himself guessed (or obtained

through other means) without the help of any

of the n agents.

In other words, for all t belongs to S, the event

that the target himself guesses any data t without

the help of any of the n agents. Assume that the

distributor set T, the agent sets Rn, and the target

set S are: T = {t1, t2, t3}, R1 = {t1, t2}, R2 = {t1, t3},

S = {t1, t2, t3}.

In this case, all the records (objects) of the

distributor’s set has been leaked and found in any

unauthorized place. Initially consider how the

target may have received records t1 from the

distributor, which was given to both agents. From

Assumption 2, the target either guessed t1 or one

of U1 or U2 leaked it. We know that the probability

of the former event is p, so assuming that
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probability that each of the two agents leaked t1

is the same, we have the following cases:

• The target guessed t1 with probability p,

• Agent U1 leaked t1 to S with probability (1–p)/

2

• Agent U2 leaked t1 to S with probability (1–p)/

2

Similarly, if the record t2 is found in S, the agent

U1 is purely responsible for that leakage, since

he is the only agent holds the record t2. And the

probability that U1 leaked t2 is 1 – p. Known all

these values, the probability that agent U1 is not

guilty, such that U1 did not leak either object, is

Pr{G1|S} =(1 –(1 -p)/2 *(1–(1–p)) ...(1)

and the probability that U1 is guilty is

Pr{G1,S}=1-Pr{G1} ...(2)

Note that if Assumption 2 did not satisfy, our

determination would be more difficult because we

would need to consider joint events, e.g., And

consider the case if the target identifies the

records t1, t2 at the same time, one or two agents

who holds the corresponding data may leak the

records. In our simplified analysis, we say that

an agent is not guilty when the object can be

guessed, regardless of whether the agent leaked

the value. Since we are “not counting” instances

when an agent leaks information, the simplified

analysis yields conservative values (smaller

probabilities).

With the general assumptions, to find the

probability that an agent Ui is guilty given a set S,

first, we calculate the probability that he leaks a

single object t to S. To calculate this, we define

the set of agents Vt = {Ui | t  Ri} that have t in

their data sets. Then, using Assumption 2 and

known probability p, we have the following:

Pr {some agent leaked t to S}= 1 – p ...(3)

Assuming that all agents who receives the

records from the distributor can leak the records

t to S with equal probability and using Assumption

2, we gets

Pr{Ui leaked t to S}={(1–p)/vt,  if Ui  Vt ...(4)

Assume that agent Ui is guilty and if he leaks

at least one of the value to S, with Assumption 1

and Equation (4), we can compute the probability

Pr{Gi,S} that agent Ui is guilty:

Pr{Gi,S}=1–(1–(1–p)/Vt) ...(5)

GUILT MODEL ANALYSIS
This model is used to analyze the guilty agents

who leaked the records to the target. Here we

have two scenarios. And in each scenario we have

a target who have received all the records from

the distributor, i.e., T = S.

Impact of Probability p

In the first scenario, consider that the distributor

set T contains 16 Objects and all of them is given

to the agent U1 and only eight of the objects is

given to the agent U2. We calculate the

probabilities Pr{G1|S} and Pr{G2,S} for p in the

range [0, 1] and we present the results in Figure

1a. The dashed line represents Pr{G1,S} and the

solid line represents Pr{G2,S}.

As p approaches to 0, it is assumed that the

target is guessed for all 16 values. Each agent has

enough of the leaked data that its individual guilt

approaches 1. However, as p increases in value,

the probability that U2 is guilty decreases significantly:

all of U2’s eight objects were also given to U1, so it

gets harder to blame U2 for the leaks.

On the other hand, U2’s probability of guilt
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Figure 1: Guilt probability as a function of the guessing probability p (a) and the overlap
between S and R2 (b)-(d), in all scenarios, it holds that R1  S = S and |S|=16,

(a) (|R2 S|/|S|) = 0:5, (b) p = 0.2, (c) p =0.5, and (d) p =0.9

remains close to 1 as p increases, since U1 has

eight objects not seen by the other agent. At the

extreme, as p approaches 1, it is very possible

that the target guessed all 16 values, so the

agent’s probability of guilt goes to 0.

Impact of Overlap Between Ri and S

In this case, we have two agents, one receives

all the records from the distributor, i.e., the agent

receives all the patient records from the hospital

administrator and the second agent receives the

varying fraction of data. Figure 1b shows the

probability of guilt for both agents, as a function

of the fraction of the objects owned by U2, i.e., as

a function of |R2 )H S|/|S|. In this case, p has a

low value of 0.2, and U1 continues to have all

16S objects. Note that in our previous scenario,

U2 has 50% of the S objects. We see that when

objects are rare (p = 0.2), it does not take many

leaked objects before we can say that U2 is guilty

with high confidence. This result matches our

intuition: an agent that owns even a small number

of incriminating objects is clearly suspicious.

Figures 1c and 1d show the same scenario,

except for values of p equal to 0.5 and 0.9. We

see clearly that the rate of increase of the guilt

probability decreases as p increases. This

observation again matches our intuition: As the

objects become easier to guess, it takes more

and more evidence of leakage (more leaked

objects owned by U2) before we can have high

confidence that U2 is guilty. In [14], we study an

additional scenario that shows how the sharing

of S objects by agents affects the probabilities

they are guilty. The scenario conclusion matches

our intuition: with more agents holding the

replicated leaked data, it is harder to lay the blame

on any one agent.

DATA ALLOCATION PROBLEM
The main focus of this project is the Data
allocation problem. Such that the distributor
intelligently distributes the data to the agents. As
described in Figure 2, there are four instances of
this problem we address, depending on the type
of data requests made by agents and whether
“fake objects” are allowed. The two types of
requests: sample and explicit. Fake objects are
objects determined by the distributor that are not
in set T. The objects are designed to look like real
objects, and are distributed to agents together
with T objects, in order to increase the chances
of detecting agents that leak data.

As shown in Figure 2, we represent our four
problem instances with the names EF, EF’, SF,
and SF’, where E stands for explicit requests, S

for sample requests, F for the use of fake objects,
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and F’ for the case where fake objects are not

allowed.

Note that, for simplicity, we are assuming that

in the E problem instances, all agents make

explicit requests, while in the S instances, all

agents make sample requests. Our results can

be extended to handle mixed cases, with some

explicit and some sample requests. We provide

here a small example to illustrate how mixed

requests can be handled, but then do not elaborate

further. Assume that we have two agents with

requests R1 = EXPLICIT(T, cond1) and R2  =

SAMPLE (T’,1), where T’ = EXPLICIT(T, cond2).

Further, say that cond1 is “state = CA” (objects

have a state field). If agent U2 has the same

condition cond2 = cond1, we can create an

equivalent problem with sample data requests on

set T’. That is, our problem will be how to distribute

the CA objects to two agents, with R1 = SAMPLE

(T’,|T|) and R2 = SAMPLE (T’, 1). If instead U2

uses condition “state =NY,” we can solve two

different problems for sets T0 and T – T’. In each

problem, we will have only one agent. Finally, if

the conditions partially overlap, R1 T’ , but

R1  T’, we can solve three different problems

for sets R1 – T’, R1  T’, and T’- R1.

Fake Objects

The distributor may be able to add fake objects

Figure 2: Leakage Problem Instances to the distributed data in order to improve his

effectiveness in finding the guilty agents. However,

fake objects may impact the correctness of what

agents do, so they may not always be allowable.

In our case, we are altering the set of distributor

records by adding fake records. In some

applications, fake objects may results in fewer

issues that altering real records. For example,

say that the distributed data objects are medical

records and the agents are hospitals. In this case,

even small modifications to the records of actual

patients may be undesirable. However, the

addition of some fake medical records may be

acceptable, since no patient matches these

records, and hence, no one will ever be treated

based on fake records.

Creation: Here, we model the creation of a fake

object for agent Ui as a black box function

CREATEFAKEOBJECT(Ri, Fi, condi) which

takes the following as the input ,the set of all

records Ri, the subset of fake records Fi that Ui

has received so far, and condi of the explicit

request sent by the agent, and returns a new fake

object. This function needs condi to produce a

valid object which satisfies Ui’s condition. Set Ri

is needed as input so that the created fake object

is not only valid but also indistinguishable from

other real objects. CREATEFAKEOBJECT() has

to be aware of the fake objects Fi added so far,

again to ensure proper statistics. The distributor

can also use function CREATEFAKEOBJECT()

when the distributor needs to send the same fake

records to a set of agents. In this case, the

function arguments are the union of the Ri and Fi

tables, respectively, and the intersection of the

conditions.

Optimization Problem

When the distributor allocates data to agents he
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should satisfy a constraint and an objective. The

constraint of the distributor is to satisfy agent’s

requests, such that the distributor should provide

the number of objects that the agents request or

providing the objects which satisfies agent’s

constraint. And the objective of the distributor is

to detect the guilty agent who has leaked his data

to the third parties. The constraint is strictly

considered. The distributor may not deny serving

an agent request as in [13] and may not provide

agents with different perturbed versions of the

same objects as in [1]. We consider fake record

distribution as the only possible constraint

relaxation. Our detection objective is ideal and

intractable. Detection would be assured only if

the distributor gave no data object to any agent

(Mungamuru and Garcia-Molina [11] discuss that

to attain “perfect” privacy and security, we have

to sacrifice utility). We use instead the following

objective: maximize the chances of detecting a

guilty agent that leaks all his data objects. We

now introduce some notation to state formally the

distributor’s objective Pr{Gi|S=Ri} or simply

Pr{Gj,Rj} is the probability that agent Uj is guilty if

the distributor discovers a leaked table S that

contains all Ri objects. We define the difference

functions (i,j) as

(i,j)=Pr{Gi|Rj}-Pr{Gj|Ri}  i,j=1,…,n ...(6)

Note that differences have nonnegative values:

given that set Ri contains all the leaked objects,

agent Ui is at least as likely to be guilty as any

other agent. Difference (i,j) is positive for any

agent Uj, whose set Rj does not contain all data

of S. It is zero if Ri not subset of Rj. In this case,

the distributor will assume that both the agents

Ui and Uj are guilty with equal probability. Since

they  both have received all the leaked objects.

The larger a (i,j) value is, the easier it is to identify

Ui as the leaking agent. Thus, we want to

distribute data so that values are large.

Problem Definition: Let the distributor (Hospital

admin) have data requests from n agents. The

distributor wants to give the patient records R1,

..., Rn to agents U1, ..., Un, respectively, so that

a. He satisfies agents’ requests, and

b. He maximizes the guilt probability differences

(i,j) for all i, j = 1, ..., n and i  j.

Assuming that the Ri sets satisfy the agents’

requests, we can express the problem as a

multicriterion optimization problem:

Maximize(..., (i,j), …)      i  j ...(7)

If the optimization problem has an optimal

solution, it means that there exists an allocation

D* = {R*
1, …, R*

n} such that any other feasible

allocation D = {R1, ..., Rn} yields (i, j) *(i, j)

for all i, j. This means that allocation D* allows

the distributor to discern any guilty agent with

higher confidence than any other allocation, since

it maximizes the probability Pr{Gi,Ri} with respect

to any other probability Pr{Gi,Rj} with j  i. Even if

there is no optimal allocation D*, a multicriterion

problem has Pareto optimal allocations. If Dpo =

{R1
po, ..., Rn

po} is a Pareto optimal allocation, it

means that there is no other allocation that yields

(i, j)  po (i, j) for all i, j. In other words, if an

allocation yields (i,j)  po (i, j) for some i, j, then

there is some i’, j’such that (i’, j’) po (i’, j’). The

choice among all the Pareto optimal allocations

implicitly selects the agent(s) we want to identify.

Objective Approximation

We can approximate the objective of Equation

(7) with (8) that does not depend on agents’ guilt
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probabilities, and therefore, on p.

Maximize ..., , ...
i j

i

R R
i j

R

 
  
 
 

...(8)

This approximation is valid if minimizing the

relative overlap 
i j

i

R R

R


 maximizes (i, j). The

intuitive argument for this approximation is that

the fewer leaked objects set Rj contains, the less

guilty agent Uj will appear compared to Ui (since

S = Ri). The example of Section 5.2 supports our

approximation. In Figure 1, we see that if S =R1,

the difference Pr{G1|S}-Pr{G2|S} decreases as the

relative overlap 
2R s

s


 increases.

Theorem 1 shows that a solution to (7) yields

the solution to (8) while every record is allocated

to same number of agents but does not depend

on whether the agent leaked the data or not . The

proof of the theorem is in [14].

Theorem 1 If a distribution D = {R1, . . .,Rn} that

satisfies agents’ requests minimizes  and |Vt|=

|Vt1| for all t, t’ T, then D maximizes (i, j).

These optimization problem still have multiple

criteria and it can results in either an optimal or

multiple Pareto optimal solutions. Pareto optimal

solutions let us detect a guilty agent Ui with high

confidence, at the expense of an inability to detect

some other guilty agent or agents. Since the

distributor has no priority information for the

agents’ intention to leak their data, he has no

reason to bias the object allocation against a

particular agent. Therefore, we can scalarize the

problem objective by assigning the same weights

to all vector objectives. We present two different

scalar versions of our problem in (9a) and (9b).

In the rest of the paper, we  refer to objective (9a)

as the sum-objective and to objective (9b) as the

max-objective:

Maximize  1 1

1n n

i ji j
i

R R
R 

  
     

       ...(9a)

Maximize max(i, j)
i j

i

R R

R


 ...(9b)

If such a solution exists, then the scalar

optimization problems yield the optimal solution

of the problem of (8). The sum-objective solution

yields pareto optimal solution, If there is no global

optimal solution exists, which allows the

distributor to detect the guilty agent, on average

(over all different agents), with higher confidence

than any other distribution. The distributor will

detect the guilty agent with a certain confidence

in the worst case by means of this max-objective,

which may adversely impact the average

performance of the distribution.

ALLOCATION STRATEGIES
We describe allocation strategies that solve

exactly or approximately the scalar versions of
(8) for the different instances presented in Figure

2. We resort to approximate solutions in cases
where it is inefficient to solve accurately the

optimization problem. In Section 7.1, we deal with
problems with explicit data requests, and in

Section 7.2, with problems with sample data

requests. The proofs of the theorems that are
stated in the following sections are available in

(Sion et al., 2003).

Explicit Data Requests

In problems of class EF’, the fake record is not

added by the distributor while allocating records
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to the agents. Hence, the allocation of data is fully

defined by the agent’s data requests. Therefore,

there is nothing to optimize. In EF problems, the

fake records are added while allocating data to

agents and the objective values are initialized by

agent’s data requests. Say, for example, that T =

{t1, t2} and there are two agents with explicit data

requests such that R1 = {t1, t2} and R2 = {t1}.

The value of the sum objective is in this case

2 2

1 1

1 1
1/ 1 1.5

2 2i i

R Ri Rj
 

     
 

 

The Records of R1 and R2 cannot be removed

or altered to minimize the overlap R1  R2.

Somehow, consider that the distributor can create

a fake record (B = 1) and both agents can receive

one fake object (b1 = b2 = 1). In this case, a single

fake record can be added to either R1 or R2 by

the distributor to maximize the corresponding

denominator of the summation term. Assume that

the distributor creates a fake object f and he gives

it to agent Agent U1 has now R1 = {t1,t2, f} and F1

= {f} and the value of the sum objective decreases

to (1/3) + (1/1) = 1.33 < 1.5.

If the distributor is able to create more fake

objects, he could further improve the objective.

We present in Algorithms 1 and 2a strategy for

randomly allocating fake objects. Algorithm 1 is a

general “driver” that will be used by other

strategies, while Algorithm 2 actually performs the

random selection. We denote the combination of

Algorithm 1 with 2 as e-random. We use e-

random as our baseline in our comparisons with

other algorithms for explicit data requests.

Algorithm 1: Allocation for Explicit Data Requests

(EF)

Input: R1,...,Rn, cond1, . . . , condn, b1,. . . , bn, B

Output: R1, ..., Rn, F1, ..., Fn

1: R  Agents that can receive fake objectss

2: for i = 1, ..., n do

3: if bi > 0 then

4: RR U {i}

5: Fi

6: while B > 0 do

7: i SELECTAGENT(R,R1, . . .,Rn)

8: f  CREATEFAKEOBJECT(Ri, Fi, condi)

9: Ri  Ri U {f}

10: Fi  Fi U {f}

11: bi  bi -1

12: if bi =0then

13: R  R\{Ri}

14: B  B – 1

Algorithm 2: Agent Selection for e-random

1: function SELECTAGENT (R, R1, ..., Rn)

2: i select at random an agent from R

3: return i.

In lines 1-5, Algorithm 1 finds agents that are

eligible to receive fake objects in O(n) time. Then,

in the main loop in lines 6-14, the algorithm

creates one fake object in every iteration and

allocates it to random agent. The algorithm

minimizes every term of the objective summation

by adding the maximum number bi of fake objects

to every set Ri, yielding the optimal solution. The

algorithm just selects at random the agents that

are provided with fake objects. We return back to

our example and see how the objective would

change if the distributor adds fake object f to R2

instead of R1. In this case, the sum-objective

would be

(1/3) + (1/1) = 1.33 < 1.5
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The reason why we got a greater improvement

is that the addition of a fake object to R2 has

greater impact on the corresponding summation

terms, since(1/R1)–(1/|R1|+1)=1/6<(1/R2)–(1/

|R2|+1)=1/2.

The left-hand side of the inequality corresponds

to the objective improvement after the addition of

a fake object to R1 and the right-hand side to R2.

We can use this observation to improve Algorithm

1 with the use of procedure SELECTAGENT() of

Algorithm 3. We denote the combination of

Algorithms 1 and 3 by e-optimal.

Algorithm 3: Agent Selection for e-optimal

1: function SELECTAGENT (R,R1, . . .,Rn)

2: i  argmax  1 1

1

n

i

j
Ri Rj

Ri Ri

 
      



3: return i

Algorithm 3 makes a greedy choice by

selecting the agent that will yield the greatest

improvement in the sum objective.

Sample Data Requests

In  this type of request the agents does not mention
any constraints (Cond), Instead they mention
about the number of patient records they need
(m) with the size the agent may receive any
number of records. Here the guilty probability
depends on which agent has received the leaked
object. In this method we have two algorithms
namely random and s-random.

Note that the distributor can increase the
number of possible allocations by adding fake
objects (and increasing |T| but the problem is
essentially the same. So, in the rest of this
section, we will only deal with problems of class
SF’, but our algorithms are applicable to SF
problems as well.

Random

An object allocation that satisfies requests and

ignores the distributor’s objective is to give each

agent Ui a randomly selected subset of T of size

mi. We denote this algorithm by s-random and

we use it as our baseline. We present s-random

in two parts: Algorithm 4 is a general allocation

algorithm that is used by other algorithms in this

section. In line 6 of Algorithm 4, there is a call to

function SELECTOBJECT() whose implementation

differentiates algorithms that rely on Algorithm 4.

Algorithm 5 shows function SELECTOBJECT()

for s-random.

Algorithm 4:  Allocation for Sample Data

Requests

Input: m1,…m2….,mn,|T|

Output: R1,R2,…,Rn

1: a0|T|,a[k]-number of agents who have

received the object tk

2: R1 ,….,Rn

3: remaining”i=1mi

4: while remaining > 0 do

5: for all i = 1,….,n:|Ri|<mi do

6: kSelectObject(i,Ri)

7: RiRi U {tk}

8: a[k]a[k]+1

9: remainingremaining-1

Algorithm 5: Object Selection for s-random

1: function SELECTOBJECT(i,Ri)

2: k  select at random an element from set

    {k’|tk’ not belongs to Ri}

3: Return k

In s-random, we introduce vector a  N|T| that
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shows the object sharing distribution. In particular,

element a[k] shows the number of agents who

receive object tk. Algorithm s-random allocates

objects to agents in a round-robin fashion. After

the initialization of vectors d and a in lines 1 and 2

of Algorithm 4, the main loop in lines 4-9 is

executed while there are still data objects

(remaining > 0) to be allocated to agents. In each

iteration of this loop (lines 5-9), the algorithm uses

function SELECTOBJECT() to find a random

object to allocate to agent Ui. This loop iterates

over all agents who have not received the number

of data objects they have requested.

The s-random algorithm allocates the objects

to agents in a round-robin fashion. In each iteration

the algorithm uses selectobject(). Here the

algorithm yields poor data allocation, since it

provides all the agent with the same object.

The running time of the algorithm is O(T) and

depends on the running time of the object

selection function SELECTOBJECT(). In case of

random selection, we can have T=O(1) by

keeping in memory a set {k’ | tk F Ri} for each

agent Ui. Algorithm s-random may yield a poor

data allocation. Consider, for example, initially the

distributor has three sets of records and each

record is requested by the three agents. Using s-

random, allocates same record with the all three

agents. Therefore such an allocation increases

both objectives (9a) and (9b) instead of

minimizing them.

Overlap Minimization

From the final example, the distributor can

minimize the sum objective and Maximize

objective by providing unique sets to all three

agents. Thus the allocation is possible, because

the agent’s request of the records is lesser than

the records holded by the distributor, such an

allocation is achieved by using Algorithm 4 and

SELECTOBJECT() of Algorithm 6. The resulting

algorithm is denoted by s-overlap. We use

Algorithm 6, in every iteration of Algorithm 4, we

allocate agent Ui with an record that has been

given to the smallest number of agents. Therefore,

if agents request for lesser records than |T|,

Algorithm 6 will return that no agent has received

the record so far. Therefore, that record will be

allocated to the agent.

Algorithm 6: Object Selection for s-overlap

1: function SELECTOBJECT (i,Ri,a)

2: K  {k| k=argmin a[k’]}

3: K  select at random an element from set

    {k’ | k  k  tk
’ F Ri}

4: return k.

CONCLUSION
To avoid the leakage, the distributor need not want

to handover sensitive data to agents who might

leak the data to the third parties. Even if the

distributor needs to send the data to the agent.

Traditionally we could watermark each record

inorder to find the data getting leaked. Somehow,

in certain situation, we are supposed to work with

agents who are not be 100% trusted. And also in

some cases use of watermark results in altering

the original data. In case of hospital management

system, the patient record is very sensitive and

should not be leaked to third parties.

In this paper we proposed the data allocation

strategies to allocate the objects to the desired

agents. And also we use various algorithms to

improve the techniques of identifying a leaker. The

various algorithm to identify the leaked objects and

the guilty person is identified. Comparing to Explicit

request algorithm, the sample request algorithm
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provides poor data allocation techniques. The use

of these algorithm minimizes the probability of data

getting leaked to the third party.
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